基于DNN卷积核分割的边缘协作推理性能分析

本文提出了一种基于卷积核分割的边缘协作推理方案,旨在优化深度神经网络(DNN)在资源受限的边缘设备上的推理性能。通过定量和定性分析,对比了传统的基于工作负载分割方法,卷积核分割方案在计算量、内存占用和通信开销上的优势。实验结果显示,卷积核分割方案在大规模计算场景下,尤其是在多设备协作时,能有效降低内存占用和通信开销,提高推理速度,同时具有更高的灵活性和鲁棒性。
摘要由CSDN通过智能技术生成

目录

0 引言

1 卷积核分割方案构建

1.1 卷积计算量和参数量建模

图1

1.2 卷积核分割卸载方案构建

图2

2 定量建模分析

2.1 计算量建模分析

图3

2.2 内存占用建模分析

图4

2.3 通信量建模分析

图5

图6

3 定性理论分析

图7

4 卷积核分割软硬件实验

图8

图9

5 结束语


摘要

随着智能芯片在边缘终端设备的普及,未来大量的AI应用将部署在更靠近数据源的网络边缘。基于DNN的分割方法可以实现深度学习模型在资源受限的终端设备上训练和部署,解决边缘 AI 算力瓶颈问题。在传统基于工作负载的分割方案(WPM, workload based partition method)的基础上,提出基于卷积核的分割方案(KPM, kernel based partition method),分别从计算量、内存占用、通信开销3个方面进行推理性能的定量分析,并从推理过程灵活性、鲁棒性、隐私性角度进行定性分析。最后搭建软硬件实验平台,使用PyTorch实现AlexNet和VGG11网络进一步验证所提方案在时延和能耗方面的性能优势,相比于传统工作负载分割方案,所提卷积核分割方案在大规模计算场景下有更好的DNN推理加速效果,且具有更低的内存占用和能量消耗。

关键词: 边缘智能 ; 深度神经网络分割 ; 协作计算 ; 并行推理

0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值