摘 要 为了探索出更好解决机器人路径规划问题的方法,提出一种差异演化的寄生樽海鞘群算法.首先在领导者位置更新公式中加入对应的上一代领导者位置信息,加强全局搜索的充分性,同时引入自适应惯性权重,更好平衡领导者在不同进化阶段对于广度和深度搜索的不同需求,提高寻优精度.然后在算法结构中引入具有不同演化策略和寄生行为机制的寄生-宿主双种群及宿主群劣汰思想,增加种群的多样性,提高算法跳出局部极值的能力.理论分析证明了改进算法的时间复杂度与基本算法相同,6种对比算法在10个不同特征的标准测试函数上进行仿真对比测试,实验结果表明:该算法的寻优精度、收敛性能均有显著提高和改善.最后将改进算法与三次埃尔米特插值相结合,以路径上的节点组合为基础定义算法中个体位置的编码方式,以绕开障碍、最短路径为目标构造了适应度函数和约束条件,求解机器人路径规划问题.在不同复杂程度的障碍物场景和不同插值方法下进行的算例求解结果显示,该算法寻优结果的最佳值、平均值和方差整体上明显优于其他5种性能优越的代表性对比算法,也验证了融合埃尔米特插值方法对于求解机器人路径规划问题的优越性和有效性.
关键词 樽海鞘群算法;惯性权重;双种群;埃尔米特插值;机器人路径规划
近年来,移动机器人技术得到国内外普遍关注,它被认为是近百年来最重要的技术发明之一,对经济和社会发展具有重要意义.如今