你一定玩过八数码游戏,它实际上是在一个 3×33×3 的网格中进行的,11 个空格和 1∼81∼8 这 88 个数字恰好不重不漏地分布在这 3×33×3 的网格中。
例如:
5 2 8
1 3 _
4 6 7
在游戏过程中,可以把空格与其上、下、左、右四个方向之一的数字交换(如果存在)。
例如在上例中,空格可与左、上、下面的数字交换,分别变成:
5 2 8 5 2 _ 5 2 8
1 _ 3 1 3 8 1 3 7
4 6 7 4 6 7 4 6 _
奇数码游戏是它的一个扩展,在一个 n×nn×n 的网格中进行,其中 nn 为奇数,11 个空格和 1∼n2−11∼n2−1 这 n2−1n2−1 个数恰好不重不漏地分布在 n×nn×n 的网格中。
空格移动的规则与八数码游戏相同,实际上,八数码就是一个 n=3n=3 的奇数码游戏。
现在给定两个奇数码游戏的局面,请判断是否存在一种移动空格的方式,使得其中一个局面可以变化到另一个局面。
输入格式
多组数据,对于每组数据:
第 11 行输入一个整数 nn,nn 为奇数。
接下来 nn 行每行 nn 个整数,表示第一个局面。
再接下来 nn 行每行 nn 个整数,表示第二个局面。
局面中每个整数都是 0∼n2−10∼n2−1 之一,其中用 00 代表空格,其余数值与奇数码游戏中的意义相同,保证这些整数的分布不重不漏。
输出格式
对于每组数据,若两个局面可达,输出 TAK
,否则输出 NIE
。
数据范围
1≤n<5001≤n<500
输入样例:
3
1 2 3
0 4 6
7 5 8
1 2 3
4 5 6
7 8 0
1
0
0
输出样例:
TAK
TAK
解题思路:
/*
大概思路:将二维的奇数码转化为一维奇数码(除去0),
若当前状态与目标状态奇偶型相同则说明可以转变为目标状态
否则则不能转变为目标状态
*/
#include <cstdio>
#include <iostream>
using namespace std;
const int N = 250010;
int cnt;//cnt为当前已记录了多少个数(除去0)
int ans1;//若当前状态与目标状态奇偶性,则说明他们的逆序对之和为偶数
int n, a[N];
int temp[N];//归并排序临时数组
void merge_sort(int l, int r)
{
if (l >= r) return ;
int mid = l + r >> 1;
merge_sort(l, mid);
merge_sort(mid + 1, r);
int i = l, j = mid + 1, k = 0;
while (i <= mid && j <= r)
{
if (a[i] <= a[j]) temp[k ++ ] = a[i ++ ];
else
{
ans1 += mid - i + 1;
temp[k ++ ] = a[j ++ ];
}
}
while (i <= mid) temp[k ++ ] = a[i ++ ];
while (j <= r) temp[k ++ ] = a[j ++ ];
for (int i = l, j = 0; i <= r; i ++ , j ++ ) a[i] = temp[j];
}
int main()
{
while (scanf("%d", &n) != EOF)
{
cnt = 0;
for (int i = 0; i < n * n; i ++ )//读入当前状态的奇数码
{
int x;
scanf("%d", &x);
if (x != 0) a[cnt ++ ] = x;
}
ans1 = 0;
merge_sort(0, cnt - 1);
cnt = 0;
for (int i = 0; i < n * n; i ++ )//读入目标状态的奇数码
{
int x;
scanf("%d", &x);
if (x != 0) a[cnt ++ ] = x;
}
merge_sort(0, cnt - 1);
if (ans1 % 2) puts("NIE");//若他们的逆序对之和为偶数
else puts("TAK");
}
return 0;
}