《算法竞赛进阶指南》 生日蛋糕

77 月 1717 日是 Mr.W 的生日,ACM-THU 为此要制作一个体积为 NπNπ 的 MM 层生日蛋糕,每层都是一个圆柱体。

设从下往上数第 ii 层蛋糕是半径为 RiRi,高度为 HiHi 的圆柱。

当 i<Mi<M 时,要求 Ri>Ri+1Ri>Ri+1 且 Hi>Hi+1Hi>Hi+1。

由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积 QQ 最小。

令 Q=SπQ=Sπ ,请编程对给出的 NN 和 MM,找出蛋糕的制作方案(适当的 RiRi 和 HiHi 的值),使 SS 最小。

除 QQ 外,以上所有数据皆为正整数。

输入格式

输入包含两行,第一行为整数 NN,表示待制作的蛋糕的体积为 NπNπ。

第二行为整数 MM,表示蛋糕的层数为 MM。

输出格式

输出仅一行,是一个正整数 SS(若无解则 S=0S=0)。

数据范围

1≤N≤100001≤N≤10000,
1≤M≤201≤M≤20

输入样例:

100
2

输出样例:

68

 

 

 

 

/*
解题思路如图:

*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 21, INF = 0x3f3f3f3f;

int ans = INF;
int n, m;
int R[N], H[N];
int minv[N], mins[N];

void dfs(int u, int v, int s)
{
    if (s + mins[u] > ans) return ;//剪枝3
    if (v + minv[u] > n) return ;
    if (s + 2 * (n - v) / R[u + 1] > ans) return ;//剪枝4
    
    if (!u)
    {
        if (v == n) ans = s;
        return ;
    }
    
    for (int r = min(R[u + 1] - 1, (int)sqrt((n - v) / u)); r >= u; r -- )//先枚举r,在枚举h
        for (int h = min(H[u + 1] - 1, (n - v) / u / u); h >= u; h -- )
        {
            int t  = 0;
            if (u == m) t = r * r;
            R[u] = r, H[u] = h;
            dfs(u - 1, v + r * r * h, s + 2 * r * h + t);
        }
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= m; i ++ )//预处理面积和体积的最小值
    {
        mins[i] = mins[i - 1] + 2 * i * i;
        minv[i] = minv[i - 1] + i * i * i;
    }
    
    R[m + 1] =  H[m + 1] = INF;//哨兵
    
    dfs(m, 0, 0);//从最底层往上枚举;
    if (ans == INF) ans = 0;
    cout << ans << endl;
    
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥也不会hh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值