77 月 1717 日是 Mr.W 的生日,ACM-THU 为此要制作一个体积为 NπNπ 的 MM 层生日蛋糕,每层都是一个圆柱体。
设从下往上数第 ii 层蛋糕是半径为 RiRi,高度为 HiHi 的圆柱。
当 i<Mi<M 时,要求 Ri>Ri+1Ri>Ri+1 且 Hi>Hi+1Hi>Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积 QQ 最小。
令 Q=SπQ=Sπ ,请编程对给出的 NN 和 MM,找出蛋糕的制作方案(适当的 RiRi 和 HiHi 的值),使 SS 最小。
除 QQ 外,以上所有数据皆为正整数。
输入格式
输入包含两行,第一行为整数 NN,表示待制作的蛋糕的体积为 NπNπ。
第二行为整数 MM,表示蛋糕的层数为 MM。
输出格式
输出仅一行,是一个正整数 SS(若无解则 S=0S=0)。
数据范围
1≤N≤100001≤N≤10000,
1≤M≤201≤M≤20输入样例:
100 2
输出样例:
68
/*
解题思路如图:
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 21, INF = 0x3f3f3f3f;
int ans = INF;
int n, m;
int R[N], H[N];
int minv[N], mins[N];
void dfs(int u, int v, int s)
{
if (s + mins[u] > ans) return ;//剪枝3
if (v + minv[u] > n) return ;
if (s + 2 * (n - v) / R[u + 1] > ans) return ;//剪枝4
if (!u)
{
if (v == n) ans = s;
return ;
}
for (int r = min(R[u + 1] - 1, (int)sqrt((n - v) / u)); r >= u; r -- )//先枚举r,在枚举h
for (int h = min(H[u + 1] - 1, (n - v) / u / u); h >= u; h -- )
{
int t = 0;
if (u == m) t = r * r;
R[u] = r, H[u] = h;
dfs(u - 1, v + r * r * h, s + 2 * r * h + t);
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i ++ )//预处理面积和体积的最小值
{
mins[i] = mins[i - 1] + 2 * i * i;
minv[i] = minv[i - 1] + i * i * i;
}
R[m + 1] = H[m + 1] = INF;//哨兵
dfs(m, 0, 0);//从最底层往上枚举;
if (ans == INF) ans = 0;
cout << ans << endl;
return 0;
}