题解:算法竞赛进阶指南 排序

给定 n 个变量和 m 个不等式。其中 n 小于等于 26,变量分别用前 n 的大写英文字母表示。

不等式之间具有传递性,即若 A>B 且 B>C,则 A>C。

请从前往后遍历每对关系,每次遍历时判断:

  • 如果能够确定全部关系且无矛盾,则结束循环,输出确定的次序;
  • 如果发生矛盾,则结束循环,输出有矛盾;
  • 如果循环结束时没有发生上述两种情况,则输出无定解。

输入格式

输入包含多组测试数据。

每组测试数据,第一行包含两个整数 n 和 m。

接下来 m 行,每行包含一个不等式,不等式全部为小于关系。

当输入一行 0 时,表示输入终止。

输出格式

每组数据输出一个占一行的结果。

结果可能为下列三种之一:

  1. 如果可以确定两两之间的关系,则输出 "Sorted sequence determined after t relations: yyy...y.",其中't'指迭代次数,'yyy...y'是指升序排列的所有变量。
  2. 如果有矛盾,则输出: "Inconsistency found after t relations.",其中't'指迭代次数。
  3. 如果没有矛盾,且不能确定两两之间的关系,则输出 "Sorted sequence cannot be determined."

数据范围

2≤n≤26,变量只可能为大写字母 A∼Z。

输入样例1:

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

输出样例1:

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

输入样例2:

6 6
A<F
B<D
C<E
F<D
D<E
E<F
0 0

输出样例2:

Inconsistency found after 6 relations.

输入样例3:

5 5
A<B
B<C
C<D
D<E
E<A
0 0

输出样例3:

Sorted sequence determined after 4 relations: ABCDE.

这题时典型得传递闭包问题:
传递闭包:若i到k有条边且k到j有条边则从i到j连一条边

如何求传递闭包?

假设一个数组g[i][j]若g[i][j] == 1说明从i到j有一条边,若g[i][j] == 0说明没有边

数组d为传递闭包

则对g[i][j]求一便floyd算法即为传递闭包

void floyd()
{
    memcpy(d, g, sizeof g);
    
    for (int k = 0; k < n; k ++ )
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < n; j ++ )
                d[i][j] |= d[i][k] & d[k][j];
}

为何时|=不是==??

因为只要在之前有一条从i到j的边则说明从i到j存在边

为何是&??

因为只有当i能走到k且k能走到j两个同时满足则说明能从i到j;

所以d[i][j] == 1说明从i到j有一条边,若d[i][j] == 0说明从i到j没有边
因此可分为三种情况:
1:若d[i][i] == 1说明无解:(假设其中有一点k,则表示从i到k有边且从k到i有边即i < i && i > i)
2:若!d[i][j] && !d[j][i]说明关系未确定;(说明从i到j没有边则说明不确定)
3:否则说明关系唯一确定从小到大输出字典序 

如何按照字典序输出?

从小到大遍历每个字母,若不存在比它小的则直接输出

char get_min()//按从小到大字典序输出
{
    for (int i = 0; i < n; i ++ )
    {
        if (!st[i])
        {
            bool flag = true;
            for (int j = 0; j < n; j ++ )//若j在之前还未输出过且j比i小
                if (!st[j] && d[j][i])
                {
                    flag = false;
                    break;
                }
            
            if (flag) //若不存在比i小的,则说明i即为最小的
            {
                st[i] = true;
                return 'A' + i;
            }
        }
    }
}

整体代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 30;

int n, m;
bool st[N];
int d[N][N];
int g[N][N];

void floyd()
{
    memcpy(d, g, sizeof g);
    
    for (int k = 0; k < n; k ++ )
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < n; j ++ )
                d[i][j] |= d[i][k] & d[k][j];
}

int check()
{
    for (int i = 0; i < n; i ++ )//说明无解:
        if (d[i][i]) return 2;
    
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < i; j ++ )
            if (!d[i][j] && !d[j][i])//说明不确定
                return 0;
    
    return 1;//说明唯一确定
}

char get_min()//按从小到大字典序输出
{
    for (int i = 0; i < n; i ++ )
    {
        if (!st[i])
        {
            bool flag = true;
            for (int j = 0; j < n; j ++ )//若j在之前还未输出过且j比i小
                if (!st[j] && d[j][i])
                {
                    flag = false;
                    break;
                }
            
            if (flag) //若不存在比i小的,则说明i即为最小的
            {
                st[i] = true;
                return 'A' + i;
            }
        }
    }
}

int main()
{
    while (cin >> n >> m, n || m)
    {
        memset(g, 0, sizeof g);
        
        int type = 0, t;
        for (int i = 1; i <= m; i ++ )
        {
            char str[5];
            cin >> str;
            int a = str[0] - 'A', b = str[2] - 'A';//将A - Z映射成0 -> 25
            if (!type)//type == 0说明不确定, type == 1说明唯一确定, type == 2说明有矛盾
            {
                g[a][b] = 1;//a < b从a -> b连一条边
                floyd();//求传递闭包
                type = check();//检查是什么类型
                if (type) t = i;//即使能确定也不能break要全部读完防止上一轮数据影响
            }
        }
        
       if (type == 2) printf("Inconsistency found after %d relations.\n", t);
       else if (type == 0) printf("Sorted sequence cannot be determined.\n");
       else 
       {
           printf("Sorted sequence determined after %d relations: ", t);
           
           memset(st, 0, sizeof st);//先清空以免上一轮产生影响
           for (int i = 0; i < n; i ++ ) printf("%c", get_min());
           printf(".\n");
       }
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥也不会hh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值