大数据面试高频题目 - 深度解析 HBase:探秘分布式 NoSQL 数据库的关键技术

本文将深入探讨 HBase,这是分布式 NoSQL 数据库中的关键技术,被广泛用于大数据存储和实时查询。透过高频面试题解析,我们将深入研究 HBase 在数据存储和检索中的作用。无论你是初学者还是渴望加深对 NoSQL 数据库技术的了解,本文都将为你提供实用的面试准备。

hbase是一种分布式、可扩展,支持海量存储的NoSQL数据库

一、架构角色

1、master

实现类为hmaster,负责监控集群中所有的regionserver实例,功能如下:

(1)管理元数据表格hbase:meta,接受用户对表格创建修改的命令并执行

(2)监控region是否需要负载均衡,故障转移和region的拆分

2、region server

实现类为hregionserver,组合作用如下:

(1)负责数据cell的处理,例如写入数据put,查询数据get等

(2)拆分合并region的实际执行者,由master监控,有regionserver执行

二、hbase的写流程

1、client客户端向zk发生请求创建连接

2、读取zk存储meta表是由哪个region server管理(如103)、

3、访问103读取meta表

4、将读取的meta表作为属性保存在连接中,如果meta发生变化需要重新读取缓存

5、向待写入表发送put写数据请求

6、将请求先写入WAL

在mem story会排序并保存一段时间,并不安全。数据在写入到mem story之后就会返回写入成功的ack,此时宕机可以通过WAL找回

7、操作put请求,写入到对应mem story并排序

8、等待触发刷写条件写入对应的store

三、hbase的读流程

1、client客户端向zk发生请求创建连接

2、读取zk存储元数据表是由哪个region server管理(如103)

3、访问103读取meta表

4、将meta表作为属性保存在连接中,如果meta表发生变化需要重新读取缓存

5、memstore:正常读,storefile:根据索引确定待读取文件,再根据blockcache读取文件

6、合并多个位置读取到的数据,给用户返回最大版本的数据,如果最大版本数据为删除标记,则不返回任何数据

四、hbase的刷写策略

1、mem store:flush.size 128M,当mem store的大小达到128M,其所在region的所有memstore都会刷写

2、region:128M*4,当mem store的大小达到了128*4M时,会阻止继续会该memstore写

3、regionserver:JVM堆内存*memstore.size*memstore.size.low.limit(JVM堆内存*0.4*0.95),当regionserver中memstore的总大小达到上述值,region会按其所有memstore的大小顺序依次进行刷写,直到总大小减小到上述值以下;当总大小达到JVM内存*0.4时,会阻止继续往所有的memstore写数据

4、定期刷写:默认最后修改时间距离1小时

5、手动刷写,手动执行flush

五、region的切分

1、0.94之前:国定按10G切。当1个region中的某个store下所有storefile的总大小超过10G就会进行执行

2、0.97-2.0:动态变化,min(10G,2*128M*R^3),R是一个RS中同一张表region的数量

3、2.0之后:第一次是按照256M切,后面都按照10G切

六、hbase的合并

1、minor compaction:会将临近的若干个小的hfile合并成一个大的hflie,但不会完全清理过期和删除的数据,只执行部分的物理删除操作

2、major compaction:会将一个store下的所有hfile合并成一个大的hfile,并且会清理掉删除和过期的数据

七、rowkey设计原则

1、长度原则:建议越短越好,不要超过16个字节

2、散列原则:如果rowkey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey高位作为散列字段,由程序循环生成,低位放时间字段

3、唯一原则,必须在设计上保证其唯一性

通过对rowkey的设计,使数据能够分散到多个region中

八、hbase二级索引原理

1、原理:协处理器,协助处理数据,可以在向原始表中写入数据之后向索引表中写入一条索引数据

2、种类及写法

(1)全局 读多写少

单独创建表专门用于存储索引,索引表数据量比原始表小,读取更快速。但是写操作会写两张表的数据,跨region,需要多个连接

(2)本地 写多读少

将索引数据和原表放在一起,加在一起比原表数据大,读取相对较慢,但是由于是在同一个region,所以写操作两条数据用的是同一个连接

九、hbase和hive的对比

1、hive

(1)数据仓库:hive的本质其实就相当于将hdfs中已经存储的文件在mysql中做了一个双射关系,以方便使用hql去管理查询

(2)用于数据分析、清洗:hive适用于离线的数据分析和清洗,延迟较高

(3)基于hdfs、mapreduce:hive存储的数据依旧在datanode,编写的hql语句终将是转换成mapreduce代码执行

2、hbase

(1)数据库:是一种面向列族存储的非关系型数据库

(2)用于存储半结构化和非结构化的数据:适用于单表非关系型数据的存储,不适合做关联查询,类似join操作

(3)基于hdfs:数据持久化存储的体现形式是hfile,存放于datanode中,被regionserver以region的形式进行管理

(4)延迟较低,接入在线业务使用:面对大量的企业数据,hbase可以直接单表大量数据的存储,同时提供了高效的数据访问速度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值