二叉树查找结点及父结点

编写程序在二叉树中查找给定结点及父结点。二叉树结点的数据域值不等于0的整数。

输入格式:

输入第1行为一组用空格间隔的整数,表示带空指针信息的二叉树先根序列,其中空指针用0表示。例如1 5 8 0 0 0 6 0 0表示如下图的二叉树。第2行为整数m,表示查询个数。接下来m行,每行为一个不等于0的整数K,表示要查找的结点的数据值。m不超过100,二叉树结点个数不超过150000,高度不超过6000。输入数据保证二叉树各结点数据值互不相等。

输出格式:

输出为m行,每行1个整数,表示被查找结点K的父结点数据值,若二叉树中无结点K或结点K无父结点,则输出0。

输入样例:

1 5 8 0 0 0 6 0 0
3
8
1
6

输出样例:

5
0
1

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
typedef struct BiTNode {
	int data;
	struct BiTNode* lchild, * rchild;
}BiTNode, * BiTree;

BiTree CreateBiTree(BiTree T);
int PreTraverse(int x, BiTree T, BiTree F);
int main() {
	int n, i, x, y;
	BiTree T = NULL;
	T = CreateBiTree(T);
	scanf("%d", &n);
	for (i = 0; i < n; ++i)
	{
		scanf("%d", &x);
		y = PreTraverse(x, T, T);
		if ((y==T->data&&x==y)||!y)//排除根节点
		{
			printf("0\n");
		}
		else
			printf("%d\n",y);

	}
	return 0;
}
BiTree CreateBiTree(BiTree T)
{
	int ex;
	scanf("%d", &ex);
	if (ex == 0)
		T = NULL;
	else
	{
		T = (BiTree)malloc(sizeof(BiTNode));
		T->data = ex;
		T->lchild = CreateBiTree(T->lchild);
		T->rchild = CreateBiTree(T->rchild);
	}
	return T;
}
int PreTraverse(int x, BiTree T, BiTree F)
{

	if (!T)
		return 0;
	int a, b;
	if (x == T->data)
		return F->data;
	else
	{
		F = T;//记录根节点
		a = PreTraverse(x, T->lchild, F);
		b = PreTraverse(x, T->rchild, F);
		return a ? a : b;
	}
}
/*也可以直接返回要查找的节点,他人更优代码
* BiTree PreTraverse(int x,BiTree T)
* {
	if(!T)
	return T;
	
    if((T->lchild != NULL && T->lchild->data == x) || (T->rchild != NULL && T->rchild->data == x))//要优先判断子树是否为空,不然会内存溢出
        return T;
    BiTree result = DFS(x,T->lchild);//先查左子树,再查右子树
    if(result!=NULL)
        return result;
    return DFS(x,T->rchild);
* } 
	版权声明:本文为CSDN博主「qq_59011427」的原创文章,遵循CC 4.0 BY - SA版权协议,转载请附上原文出处链接及本声明。
	原文链接:https ://blog.csdn.net/qq_59011427/article/details/127810975
*/

### Python 实现二叉树查找节点及父节点 在 Python 中实现二叉树查找节点及其父节点的功能,可以通过递归或迭代的方式来完成。以下是具体的实现方法。 #### 方法概述 为了实现这一功能,首先需要定义一个 `TreeNode` 类来表示二叉树的节点结构。接着通过递归来遍历整个二叉树,找到目标节点的同时记录其父节点的信息[^1]。 --- #### TreeNode 的定义 ```python class TreeNode: def __init__(self, value=0, left=None, right=None): self.value = value self.left = left self.right = right ``` 此部分代码定义了一个基本的二叉树节点类,其中包含了三个属性:当前节点的值 (`value`)、指向左子节点的引用 (`left`) 指向右子节点的引用 (`right`)。 --- #### 查找节点及其父节点函数 以下是一个用于查找特定节点及其父节点的函数: ```python def find_node_and_parent(root, target_value, parent=None): """ 在二叉树查找指定值的目标节点以及它的父节点。 参数: root (TreeNode): 当前正在访问的节点。 target_value (int): 要查找的目标节点的值。 parent (TreeNode): 记录当前节点的父节点,默认为 None。 返回: tuple: 如果找到了目标节点,则返回 (target_node, parent),否则返回 (None, None)。 """ if not root: return None, None # 找到目标节点时返回该节点对应的父节点 if root.value == target_value: return root, parent # 递归查找左子树 result_left = find_node_and_parent(root.left, target_value, root) if result_left != (None, None): return result_left # 递归查找右子树 result_right = find_node_and_parent(root.right, target_value, root) return result_right ``` 在此函数中,参数 `root` 表示当前处理的节点;`target_value` 是我们要寻找的目标节点的值;而 `parent` 则用来追踪当前节点的父节点。如果发现匹配项,则立即返回 `(目标节点, 父节点)` 对象。如果没有找到对应节点,则最终会返回 `(None, None)`[^3]。 --- #### 测试用例 下面提供一段测试代码以验证上述逻辑是否正确工作: ```python if __name__ == "__main__": # 构建简单二叉树实例 tree_root = TreeNode(1) tree_root.left = TreeNode(2) tree_root.right = TreeNode(3) tree_root.left.left = TreeNode(4) tree_root.left.right = TreeNode(5) # 尝试查找不同数值的结果 test_values = [5, 3, 7] for val in test_values: node, parent = find_node_and_parent(tree_root, val) if node is not None and parent is not None: print(f"Found Node({node.value}) with Parent({parent.value}).") elif node is not None: print(f"Root Node Found ({node.value}), no parent.") else: print(f"No such node found for value {val}.") ``` 运行以上脚本将会打印出针对每一个待查值的相关信息或者提示未找到相应节点的消息。 --- #### 性能考虑 由于采用的是标准深度优先搜索策略(DFS),因此时间复杂度取决于给定二叉树的高度 h ,即 O(h)[^4] 。然而,在最坏情况下——退化成链表形式的一侧倾斜树里,这可能意味着接近线性的性能表现 O(n) (n代表总节点数量)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值