题目描述
城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。 2.在满足要求1的情况下,改造的道路尽量少。 3.在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。
任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。
输入格式
第一行有两个整数n,m表示城市有n个交叉路口,m条道路。
接下来m行是对每条道路的描述,u, v, c表示交叉路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000,1≤m≤100000)
输出格式
两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
输入输出样例
输入 #1复制
4 5 1 2 3 1 4 5 2 4 7 2 3 6 3 4 8
输出 #1复制
3 6
#include<bits/stdc++.h>
using namespace std;
const int N=3e2+10,M=1e5+10;
int p[N];
int n,m;
int res[N],cnt;
struct stu
{
int a,b,w;
bool operator <(const stu &W)const
{
return w<W.w;
}
}stu[M];
int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
void kur()
{
for(int i=0;i<m;i++)
{
int a=stu[i].a,b=stu[i].b,w=stu[i].w;
a=find(a),b=find(b);
if(a!=b)
{
p[a]=b;
res[cnt++]=w;
}
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) p[i]=i;
for(int i=0;i<m;i++)
{
int x,y,z;
cin>>x>>y>>z;
stu[i]={x,y,z};
}
sort(stu,stu+m);
cout<<n-1<<" ";
kur();
sort(res,res+cnt,greater<int>());
//cout<<cnt<<endl;
cout<<res[0]<<endl;
return 0;
}