P2330 [SCOI2005]繁忙的都市

题目描述

城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。 2.在满足要求1的情况下,改造的道路尽量少。 3.在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入格式

第一行有两个整数n,m表示城市有n个交叉路口,m条道路。

接下来m行是对每条道路的描述,u, v, c表示交叉路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000,1≤m≤100000)

输出格式

两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

输入输出样例

输入 #1复制

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

输出 #1复制

3 6
#include<bits/stdc++.h>
using namespace std;
const int N=3e2+10,M=1e5+10;
int p[N];
int n,m;
int res[N],cnt;
struct stu
{
	int a,b,w;
	
	bool operator <(const stu &W)const
	{
		return w<W.w;
	}
	
}stu[M];

int find(int x)
{
	if(p[x]!=x) p[x]=find(p[x]);
	return p[x];
}

void kur()
{	
	for(int i=0;i<m;i++)
	{
		int a=stu[i].a,b=stu[i].b,w=stu[i].w;
		a=find(a),b=find(b);
		
		if(a!=b)
		{
			p[a]=b;
			res[cnt++]=w;
		}
	}
}



int main()
{
    cin>>n>>m;
    
    for(int i=1;i<=n;i++) p[i]=i;
    
    for(int i=0;i<m;i++)
    {
    	int x,y,z;
    	cin>>x>>y>>z;
    	stu[i]={x,y,z};
	}
    
    sort(stu,stu+m);
    
    cout<<n-1<<" ";
    
    kur();
    
    sort(res,res+cnt,greater<int>());
    
    //cout<<cnt<<endl;
    
   cout<<res[0]<<endl;

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值