求一个数约数的个数

16 篇文章 0 订阅

首先对于任意的一个正整数N都有N=p{_{1}}^{a1}*p{_{2}}^{a2}.....p{_{k}}^{ak}(由算数基本定理可得)并且对于每个不同的正整数 这个等式是唯一的(因为算数基本定理,每个数的因式分解是唯一的)。

我们都知道对于一个数的约数一定是不大于这个数本身的,并且约数也可以按照上述的方法分解。不妨设N的因子为d,d按照上述方法分解有d=p{_{1}}^{b1}*p{_{p2}}^{b2}.....p{_{k}}^{bk},每一项如果bi不同那么这个因子就不同,并且bi的取值范围为0~ai,所以每一项都有ai+1种取法。

最后根据乘法原理可N的约数个数为:(a1+1)*(a2+1)*(a3+1).......*(ak+1).

下面是具体实现代码:

#include <iostream>
#include <unordered_map>
using namespace std;
 long long ans=1;
 int main()
 {
 	int n;
 	cin>>n;
 	unordered_map<int,int> a;
 	
 	for(int i=2;i<n/i;i++)
 	{
 		while(n%i==0)
 		{
 			n/=i;
 			a[i]++;
		 }
	 }
 	if(n>1) a[n]++;
 	
 	for(auto c:a)
 	{
 		ans=ans*(c.second+1);
	 }
 	cout<<ans;
 	return 0;
 }
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值