首先对于任意的一个正整数N都有(由算数基本定理可得)并且对于每个不同的正整数 这个等式是唯一的(因为算数基本定理,每个数的因式分解是唯一的)。
我们都知道对于一个数的约数一定是不大于这个数本身的,并且约数也可以按照上述的方法分解。不妨设N的因子为d,d按照上述方法分解有,每一项如果bi不同那么这个因子就不同,并且bi的取值范围为0~ai,所以每一项都有ai+1种取法。
最后根据乘法原理可N的约数个数为:(a1+1)*(a2+1)*(a3+1).......*(ak+1).
下面是具体实现代码:
#include <iostream>
#include <unordered_map>
using namespace std;
long long ans=1;
int main()
{
int n;
cin>>n;
unordered_map<int,int> a;
for(int i=2;i<n/i;i++)
{
while(n%i==0)
{
n/=i;
a[i]++;
}
}
if(n>1) a[n]++;
for(auto c:a)
{
ans=ans*(c.second+1);
}
cout<<ans;
return 0;
}