Dp学习记录1

509. 斐波那契数 - 力扣(LeetCode)

动态规划5部曲:

1.确定dp数组以及下标的含义

2.确定状态转移方程

3.dp数组如何初始化

4.确定遍历顺序

5.举例推导dp数组

本题根据5部曲,首先确定dp数组以及下标含义,dp[i]表示第i个数的斐波那契数值是dp[i]

状态转移方程为dp[i] = dp[i-1]+dp[i-2]

初始化为dp[0] = 0,dp[1] = 1;

根据递归公式确定是从前往后遍历

#include<iostream>
#include<vector>
using namespace std;

class Solution
{
public:
	int fib(int n)
	{
		 vector<int>dp(n+1);
		//状态转移方程f(n) = f(n-1)+f(n-2)
		//初始化dp[0] = 0,dp[1] = 1;
		 dp[0] = 0;
		 dp[1] = 1;
		for (int i = 2; i <= n; i++)
		{
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		int result = dp[n];
		return result;
	}
};

int main()
{
	int n;
	cin >> n;
	Solution s;
	cout << s.fib(n) << endl;
}

70. 爬楼梯 - 力扣(LeetCode)

1.dp[i]表示爬到第i阶台阶的方法

2.状态转移方程:dp[i] = dp[i-1]+dp[i-2]

(假如要爬到9层台阶,可以先爬到8层台阶再爬1阶到9阶,或者爬到7阶再爬2阶到9,所以到9阶的方法等于爬到7阶的方法与爬到8阶的方法之和)

dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

那么dp[i]就是 dp[i - 1]与dp[i - 2]之和

3.初始化:爬到1阶的方法只有1种,爬到2阶的方法2种,dp[1] = 1,dp[2] = 2;

4.遍历顺序为从前往后

#include<iostream>
#include<vector>
using namespace std;

class Solution
{
public:
	int climbStairs(int n)
	{
		vector<int>dp(n + 1);
		dp[1] = 1;
		dp[2] = 2;
		for (int i = 3; i <= n; i++)
		{
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		return dp[n];
	}
};

int main()
{
	int n;
	cin >> n;
	Solution s;
	cout << s.climbStairs(n) << endl;
	return 0;
}

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

1.dp[i]表示到达第i台阶所需要的最小体力

2.到达第i级台阶可以从第i-1级台阶跳一个,或者从i-2级跳两个,从i-1级跳一个到i级所需要花费的体力等于跳到i-1级所需体力再加上从i-1跳到1所需的体力,即:dp[i-1]+cost[i-1],从i-2阶跳也是如此,题目要求体力花费的最小值,所以状态转移方程为:

dp[i] =min((dp[i-1]+cost[i-1]),dp[i-2]+cost[i-2]);

3.初始化:dp[0] = 0,dp[1] = 0;

4.遍历顺序为从前往后

#include<iostream>
#include<vector>
using namespace std;

int minCostClimbingStairs(vector<int>& cost)
{
	int n = cost.size();
	vector<int>dp(n + 1);
	dp[0] = 0;
	dp[1] = 0;
	for (int i = 2; i <= n; i++)
	{
		dp[i] = min((dp[i-1]+cost[i-1]),(dp[i-2]+cost[i-2]));
	}
	return dp[n];
}

int main()
{
	int n;
	cin >> n;//输入cost数组的大小
	vector<int>cost(n);
	for (int i = 0; i < n; i++)
	{
		cin >> cost[i];
	}
	int res = minCostClimbingStairs(cost);
	cout << res << endl;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一篇关于区间DP学习笔记,希望对你有所帮助。 ### 什么是区间DP 区间 DP 是一种动态规划算法,用于解决一些区间上的问题。具体来说,区间 DP 通常用于解决如下问题: - 最长公共子序列(LCS) - 最长递增子序列(LIS) - 最大子段和 - 区间选数问题 区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。 ### 区间 DP 的递推方法 区间 DP 的递推方法通常有两种,一种是自底向上的递推方法,一种是自顶向下的记忆化搜索方法。 自底向上的递推方法通常采用二维数组或三维数组来记录状态转移方程,具体的递推方式如下: ```cpp for (int len = 2; len <= n; len++) { for (int i = 1; i <= n - len + 1; i++) { int j = i + len - 1; for (int k = i; k < j; k++) { // 状态转移方程 } } } ``` 其中,len 表示区间长度,i 和 j 分别表示区间的左右端点,k 表示区间的划分点。 自顶向下的记忆化搜索方法通常采用记忆化数组来记录状态转移方程,具体的递推方式如下: ```cpp int dp(int i, int j) { if (i == j) return 0; if (memo[i][j] != -1) return memo[i][j]; memo[i][j] = INF; for (int k = i; k < j; k++) { memo[i][j] = min(memo[i][j], dp(i, k) + dp(k + 1, j) + ...); } return memo[i][j]; } ``` 其中,i 和 j 分别表示区间的左右端点,k 表示区间的划分点,memo 数组用于记忆化状态转移方程。 ### 区间 DP 的优化 对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。 一种常见的优化方式是状态压缩,将二维或三维数组压缩成一维数组,从而减少空间的消耗。 另一种常见的优化方式是使用滚动数组,将数组的维度从二维或三维减少到一维,从而减少时间和空间的消耗。 此外,对于一些具有特殊性质的区间 DP 问题,我们还可以使用单调队列或单调栈等数据结构来进行优化,从而减少时间和空间的消耗。 ### 总结 区间 DP 是一种常用的动态规划算法,用于解决一些区间上的问题。区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值