扩展欧几里得算法

本文详细介绍了欧几里得算法(辗转相除法)及其扩展形式,用于求解最大公约数。通过数学推理和代码实现展示了如何找到整数解,并解释了如何根据已知解求解其他解。此外,还提供了ACwing五指山问题的解题思路作为示例。最后,讨论了如何求解一般形式的线性同余方程ax+by=c的解。
摘要由CSDN通过智能技术生成

前置知识:

1.给予两个整数a,b。必存在整数x,y使得ax+by=gcd(a,b)。
2.0和任何一个数的最大公约数是这个数的本身。
3.辗转相除:
g c d ( a , b ) = g c d ( b , a   m o d   b ) ∵ a   m o d   b = r ∴ a = k b ∗ r ; 设 g c d ( a , b ) = c ∴ a ∣ c , b ∣ c ∴ b k ∣ c ∵ a ∣ c   ∴ ( b k + r ) ∣ c , r ∣ c 由 此 得 出 : g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b) = gcd(b, a \ mod \ b) \\ \because a \ mod \ b = r \therefore a = kb*r; \\ 设gcd(a,b) = c \therefore a|c, b|c\\ \therefore bk|c \\ \because a|c \ \therefore (bk+r)|c, r|c \\ 由此得出:gcd(a,b) = gcd(b, a \ mod \ b) gcd(a,b)=gcd(b,a mod b)a mod b=ra=kbr;gcd(a,b)=cac,bcbkcac (bk+r)c,rcgcd(a,b)=gcd(b,a mod b)

推理:

1.当b=0,gcd(a,b) = a。所以x = 1, y = 0 --> ax=a;
2.当 a != 0, b != 0:
由辗转相除法可知:
g c d ( a , b ) = g c d ( b , a   m o d   b ) ∴ a x + b y = b x ′ + ( a   m o d   b ) y ′ ∴ a x + b y = b x ′ + ( a − a / b ∗ b ) y ′ ∴ a x + b y = a y ′ + b ( x ′ − a / b ∗ y ′ ) 对 比 系 数 : x = y ′     y = x ′ − a / b ∗ y ′ gcd(a, b) = gcd(b, a\ mod \ b) \\ \therefore ax+by = bx' + (a \ mod \ b)y'\\ \therefore ax+by = bx'+(a-a/b*b)y'\\ \therefore ax+by = ay'+b(x' - a/b*y') \\对比系数: x = y' \ \ \ y = x'-a/b*y' gcd(a,b)=gcd(b,a mod b)ax+by=bx+(a mod b)yax+by=bx+(aa/bb)yax+by=ay+b(xa/by)x=y   y=xa/by
也就是说,如果我们知道了x’,y’就可以倒退得到x, y然而由辗转相除可知,经gcd(a,b) = gcd(b, a%b)如此反复b将变为0,然后利用b = 0时,x = 1,y = 0逐步倒推,最终得到ax+by=gcd(a, b)的一组解。

代码:

int exGcd(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
 
    int g = exGcd(b, a % b, x, y);
    int temp = x;
    x = y;
    y = temp - a / b * y;
    return g;
}

例题

Acwing 五指山

#include<bits/stdc++.h>

#define IOS ios::sync_with_stdio(false);cin.tie(nullptr)
#define int long long 
#define endl "\n"

using namespace std;

const int N = 2e5 + 10;

int exgcd(int a, int b, int& xx, int& yy)
{
	if (!b)
	{
		xx = 1, yy = 0;
		return a;
	}

	int g = exgcd(b, a % b, yy, xx);

	yy -= a / b * xx;
	return g;
}

void solve()
{
	int n, d, x, y;
	cin >> n >> d >> x >> y;

	int  xx, yy;
	int tmp = exgcd(n, d, xx, yy);
	if ((y - x) % tmp)
	{
		cout << "Impossible" << endl;
		return;
	}
	yy *= (y - x) / tmp;
	n /= tmp;
	cout << (yy % n + n) % n << endl;
}

signed main()
{
	IOS;
	int T;
	cin >> T;
	while (T--)
		solve();
	return 0;
}

如何根据已经求得的一组整数解求得其他的整数解:

x, y是我们根据ax+by=gcd(a,b)得一组通解,现在我们设新得解为x‘,y’;那么x’ = x+s1, y‘ = y-s2,则有
a ( x + s 1 ) + b ( y − s 2 ) = g c d ( a , b ) ∴ a x + a s 1 + b y − b s 2 = g c d ( a , b ) ∵ a x + b y = g c d ( a , b ) ∴ a s 1 = b s 2 a(x+s_1)+b(y-s_2) = gcd(a,b) \\ \therefore ax+as_1+by-bs_2 = gcd(a,b) \\ \because ax+by = gcd(a, b)\\ \therefore as_1 = bs_2 a(x+s1)+b(ys2)=gcd(a,b)ax+as1+bybs2=gcd(a,b)ax+by=gcd(a,b)as1=bs2
让a,b同时除以一个较大的数(即a和b的最大公约数)
s 1 s 2 = b g c d ( a , b ) a g c d ( a , b ) ∴ s 1 = k ∗ b g c d ( a , b ) , s 2 = k ∗ a g c d ( a , b ) \frac{s_1}{s_2} = \frac{\frac{b}{gcd(a,b)}}{\frac{a}{gcd(a, b)}}\\ \therefore s_1 = k*\frac{b}{gcd(a,b)}, s_2 = k*\frac{a}{gcd(a, b)} s2s1=gcd(a,b)agcd(a,b)bs1=kgcd(a,b)b,s2=kgcd(a,b)a
由此我们可以得到ax+by = gcd(a, b)
x = x 0 + k ∗ b g c d ( a , b ) y = y 0 − k ∗ a g c d ( a , b ) x 0 , y 0 是 E X G C D 求 得 的 一 组 解 x = x_0+k*\frac{b}{gcd(a,b)}\\ y= y_0-k*\frac{a}{gcd(a,b)}\\ x_0,y_0是EXGCD求得的一组解 x=x0+kgcd(a,b)by=y0kgcd(a,b)ax0,y0EXGCD

其他:

以上是求ax+by=gcd的通解的推导,如果我们想求ax+by=c的通解,首先我们要判断c是否能整除gcd(a, b),如果不能整除代表此式子无解。

然后我们根据exgcd求出ax+by=gcd(a,b)一组解x’, y’,然后我们再求出原式的一组解
x = x ′ ∗ c g c d ( a , b ) ∗ k ∗ b g c d ( a , b ) y = y ′ ∗ c g c d ( a , b ) ∗ k ∗ a g c d ( a , b ) x = x'*\frac{c}{gcd(a,b)}*k*\frac{b}{gcd(a,b)}\\y=y'*\frac{c}{gcd(a,b)}*k*\frac{a}{gcd(a,b)} x=xgcd(a,b)ckgcd(a,b)by=ygcd(a,b)ckgcd(a,b)a

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值