HNU-算法设计与分析-作业3-棋盘覆盖问题【分治】(2021级)

棋盘覆盖

1.算法思想

        当k>0时,将2^{k}*2^{k}棋盘分割为4个2^{k-1}*2^{k-1}子棋盘(a)所示。

        特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如 (b)所示,

        从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘1×1。

2.程序设计实现

#include <iostream>
 
int tile = 1;        // 骨牌序号
int board[128][128]; // 二维数组模拟棋盘

// (tr,tc)表示棋盘的左上角坐标(即确定棋盘位置), (dr,dc)表示特殊方块的位置, size=2^k确定棋盘大小
void chessBoard(int tr, int tc, int dr, int dc, int size)
{
    // 递归出口
    if (size == 1)
        return;
    int s = size / 2; //分割棋盘
    int t = tile++;   //t记录本层骨牌序号
    // 判断特殊方格在不在左上棋盘
    if (dr < tr + s && dc < tc + s)
    {
        chessBoard(tr, tc, dr, dc, s); //特殊方格在左上棋盘的递归处理方法
    }
    else
    {
        board[tr + s - 1][tc + s - 1] = t;             // 用t号的L型骨牌覆盖右下角
        chessBoard(tr, tc, tr + s - 1, tc + s - 1, s); // 递归覆盖其余方格
    }
    // 判断特殊方格在不在右上棋盘
    if (dr < tr + s && dc >= tc + s)
    {
        chessBoard(tr, tc + s, dr, dc, s);
    }
    else
    {
        board[tr + s - 1][tc + s] = t;
        chessBoard(tr, tc + s, tr + s - 1, tc + s, s);
    }
    // 判断特殊方格在不在左下棋盘
    if (dr >= tr + s && dc < tc + s)
    {
        chessBoard(tr + s, tc, dr, dc, s);
    }
    else
    {
        board[tr + s][tc + s - 1] = t;
        chessBoard(tr + s, tc, tr + s, tc + s - 1, s);
    }

    // 判断特殊方格在不在右下棋盘
    if (dr >= tr + s && dc >= tc + s)
    {
        chessBoard(tr + s, tc + s, dr, dc, s);
    }
    else
    {
        board[tr + s][tc + s] = t;
        chessBoard(tr + s, tc + s, tr + s, tc + s, s);
    }
}

int main()
{
    int boardSize = 8;                 // 棋盘边长
    chessBoard(0, 0, 3, 3, boardSize); // (0, 0)为顶点,大小为boardSize的棋盘; 特殊方块位于(3, 3)
    // 打印棋盘
    int i, j;
    printf("\n\n\n");
    for (i = 0; i < boardSize; i++)
    { 
        for (j = 0; j < boardSize; j++)
        {
            printf("%d\t", board[i][j]);
        }
        printf("\n\n\n");
    }
    return 0;
}

3.复杂度分析:

                        T(k)=\left\{\begin{matrix} O(1),k=1\\ 4T(k-1)+O(1),k>1 \end{matrix}\right.

        T(n)=O(4^k)渐进意义下的最优算法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值