数模补充(2)数据预处理

本文探讨了数据预处理的重要性,包括处理脏数据、缺失值的填充,以及数据的归一化和变换。特别提到了Python中的三次样条插值在处理缺失值中的应用,同时阐述了异常值的管理。此外,文章还介绍了特征选择的概念及其在建模过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

1.1脏数据

 1.2缺失值

1.3过程 

 1.4数据变换

简单函数变换

归一化

 1.5数据清洗

缺失值处理

python三次样条插值函数加补充篇数模补充(1)建模数值逼近处理 

 异常值处理

二、特征过程

2.1概念

2.2特征选择

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烟雨平生9527

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值