1.冒泡排序(Bubble Sort)
较简单排序算法。
它会遍历若干次要排列的数列,每次遍历,会从前往后比较相邻两个数的大小。
如果前者比后者大,就交换他们位置。遍历一次最大元素在数列末尾。重复直到数列有序。
那么遍历需要一个变量控制范围。一个变量需要在这个范围里控制相邻元素进行比较。将最大的数作为有序数,在进行下一趟
比较就把它"踢出"遍历范围。如此一来,每个"它"都是作为"它"那次遍历的最大数,最后实现有序。
N个数,排序N-1趟,经过N-1次两两比较。
//待排序数组
int[] arr = {3, 9, -1, 10, 20};
int temp;//用于交换时使用
//总共5个数据,因此只需要排序4趟就可以完成
//因为总共5个数据,其中4个排好序之后,最后一个就自然就有位置了
//第一轮,5个数据共进行4次两两比较,所以为arr.length-1,确定出最大的数放到最后的位置
for (int j = 0; j < arr.length - 1; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
//第二轮,因为第一轮已经确定出最大的数并放到了最后位置
//因此,第二轮只需要对前边的4个数进行排序
//而4个数需要进行3次两两比较,所以是arr.length-1-1
for (int j = 0; j < arr.length - 1 - 1; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
//第三轮,只对前边3个数据进行排序,所以为arr.length-1-2
for (int j = 0; j < arr.length - 1 - 2; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
//第四轮
for (int j = 0; j < arr.length - 1 - 3; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
通过这样的分步递推,因此我们可以写成循环的形式,代码如下:
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
#include<stdio.h>
swap(int* x,int* y)
{
int temp;
temp = *x;
*x = *y;
*y = temp;
}
void bubble_sort(int* a, int n)
{
int i, j;
int flag;
for (i = n - 1; i > 0; i--)
{
flag = 0;//标志
for (j = 0; j < i; j++)
{
if (a[j] > a[j + 1])
{
swap(&a[j], &a[j + 1]);
flag = 1;//交换,标志设为1
}
}
if (flag == 0)
{
break;//没发生交换,已有序
}
}
}
void main()
{
int str[] = {2,3,4,10,9,8,7,6,5,1};
int zf = sizeof(str) / sizeof(str[0]);
bubble_sort( str, zf);
int i;
for (i = 0; i < zf; i++)
{
printf("%3d",str[i]);
}
}
2.冒泡排序的时间复杂度和稳定性
2.1冒泡排序的时间复杂度是O(n^2)。
排序算法中有两个for循环。
每个for循环的次数都是n。用数组下标表示范围就是(0,9)
2.2冒泡排序稳定性
它稳定,满足稳定算法定义。
算法稳定性:假设数列中存在a[i]=a[j];若在排序之前,a[i]在a[j]之前,排序后,a[i]还在a[j]之前,那这个算法就是稳定的!