带负权的最短路

1.Bellman-Ford O(nm)

#include <bits/stdc++.h>

using namespace std;

const int N = 510, M = 10010;
int n, m, k;
int dist[N], temp[N];
struct
{
    int a, b, w;
} g[M];

void f()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for (int i = 1; i <= k; i ++)
    {
        memcpy(temp, dist, sizeof dist);
        for (int j = 1; j <= m; j ++)
        {
            int x = g[j].a, y = g[j].b, z = g[j].w;
            dist[y] = min(dist[y], temp[x] + z);
        }
    }
    if (dist[n] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
    else cout << dist[n] << endl;
}

int main()
{
    cin.tie(0), cout.tie(0);

    cin >> n >> m >> k;
    for (int i = 1; i <= m; i ++ )
    {
        int a ,b, c;
        cin >> a >> b >> c;
        g[i] = {a, b, c};
    }

    f();

    return 0;
}

对于Bellman-Ford算法,我们只需要知道所有的边和权,而不需要一定的对应关系,所以只需要用结构体来存储即可;

2.spfa 平均O(m) 最坏O(nm)

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
int h[N], w[N], e[N], ne[N], idx;
int n, m;
int dist[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

void spfa()
{
    queue<int> q;
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    q.push(1);
    st[1] = 1;
    while (!q.empty())
    {
        int t = q.front();
        q.pop();
        
        st[t] = 0;
        
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])
                {
                    q.push(j);
                    st[j] = 1;
                }
            }
        }
    }
    if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");
    else cout << dist[n] << endl;
}

int main()
{
    cin.tie(0), cout.tie(0);
    memset(h, -1, sizeof h);
    
    cin >> n >> m;
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    spfa();
    
    return 0;
}

在最后不能以-1来判断是否有解,因为解有可能为-1;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

あなたのことが好きです319

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值