高考导数大题中的双变量不等式问题的求解思路

关于高考函数双变量问题处理方法:交叉放缩

B y \mathtt{By} By   t r a n s f o r n e t _ 2005 \space{}\mathfrak {transfornet\_2005}  transfornet_2005

1.一点说明

所有关于函数的涉及到两个变量的问题都可以被称为双变量问题,我们这里所说的双变量问题是指函数(或它的n阶导数)两个零点之间的关系,也即形如
F ( x 1 , x 2 ) ∼ k F(x_1,x_2) \sim k F(x1,x2)k
的问题。它包括但不限于极值点偏移类问题。有人也把它叫做脱胎于极值点偏移的双变量问题

2.理论

关于双变量问题我们有两种处理方法。

1.转换为单变量
2.交叉放缩

这里的“主要”甚至可以去掉。读者马上可以看到,你们课堂上老师讲的各种方法实际上都可以归为这两类。

交叉放缩基本思想:

如果一个函数 f ( x ) f(x) f(x)的两个零点 x 1 , x 2 x_1,x_2 x1,x2的不等关系,比如 x 1 − x 2 < k x_1-x_2<k x1x2<k,不容易证明,我们可以构建出一个新的函数 g ( x ) g(x) g(x),使得 g ( x ) g(x) g(x)的两个零点 x 3 , x 4 x_3,x_4 x3,x4满足 x 1 < x 3 , x 2 > x 4 x_1<x_3,x_2>x_4 x1<x3,x2>x4且容易证明 x 3 − x 4 < k x_3-x_4<k x3x4<k,那么我们就有 x 1 − x 2 < x 3 − x 4 < k x_1-x_2<x_3-x_4<k x1x2<x3x4<k

分的再细一点

1.转换为单变量
  • x 1 , x 2 x_1,x_2 x1,x2转换到同一个单调区间内部。再利用函数的单调性去解决。
  • x 1 , x 2 x_1,x_2 x1,x2用同一个变量 t t t去表示,再将问题转化为单元不等式证明。
2.交叉放缩

这个方法实际上是使用一个或两个函数去拟合原函数

  • 双边不等式
  • T a y l o r \mathtt{Taylor} Taylor展开拟合、 P a d e \mathtt{Pade} Pade逼近
  • 线性函数拟合
  • 松弛法

这些方法大多数时候需要组合起来使用以提高放缩的精度

下面以一道笔者学校的试题为例展示上述方法。

已知函数 f ( x ) = ( x + 1 ) ( e x − 1 ) . f(x)=(x+1)(e^{x}-1). f(x)=(x+1)(ex1).

  • f ( x ) f(x) f(x) ( − 1 , f ( − 1 ) ) (-1,f(-1)) (1,f(1))处的切线方程。
  • a ≤ e − 1 a\leq{e-1} ae1,求证: f ( x ) ≥ a l n x + 2 e x − 2 .   ( x ≥ 1 ) f(x)\geq{alnx+2ex-2}. \space (x\geq 1) f(x)alnx+2ex2. (x1)
  • f ( x ) = b f(x)=b f(x)=b 有两个实数根 x 1 , x 2 ( x 2 > x 1 ) x_1,x_2(x_2>x_1) x1,x2(x2>x1),求证: x 2 − x 1 ≤ 1 + b + e + 1 3 e − 1 + e b e − 1 x_2-x_1\leq 1+\dfrac{b+e+1}{3e-1}+\dfrac{eb}{e-1} x2x11+3e1b+e+1+e1eb

s o l v e . ⁡ \operatorname{\mathfrak{solve.}} solve.
( 1 )   \mathbb{(1)}\space{} (1)  l : y = ( 1 e − 1 ) ( x + 1 ) . l:y=(\dfrac{1}{e}-1)(x+1). l:y=(e11)(x+1).

( 2 )   \mathbb(2)\space{} (2)  ( a ≤ e − 1 ) ∧ ( x ≥ 1 ) ⇒ R H S ≤ ( e − 1 ) l n x + 2 e x − 2 ≤ ( e − 1 ) ( x − 1 ) + 2 e x − 2 = ( e − 1 ) ( x − 1 ) + 2 ( e x − 1 ) < = ( e x − 1 ) ( x − 1 ) + 2 ( e x − 1 ) = ( e x − 1 ) ( x + 1 ) = f ( x ) = L H S . (a\leq e-1)\wedge(x\geq 1) \Rightarrow RHS\leq (e-1)lnx+2ex-2\leq (e-1)(x-1)+2ex-2=(e-1)(x-1)+2(ex-1)<=(e^{x}-1)(x-1)+2(e^{x}-1)=(e^{x}-1)(x+1)=f(x)=LHS. (ae1)(x1)RHS(e1)lnx+2ex2(e1)(x1)+2ex2=(e1)(x1)+2(ex1)<=(ex1)(x1)+2(ex1)=(ex1)(x+1)=f(x)=LHS.

上面两问都很简单,用不等式放缩都可以轻松解决,这题主要难度是第三问,我尝试给出一种解法,若有遗漏评论区可以补充。

P r o o f . \mathfrak{Proof }. Proof. 我们注意到 f ( x ) f(x) f(x)是先减后增的单峰函数,并且有两个零点,我们可以尝试利用函数 f ( x ) f(x) f(x)两点处的切线进行交叉放缩。令 p ( x ) = ( 1 e − 1 ) ( x + 1 ) q ( x ) = ( 3 e − 1 ) x − e − 1. p(x)=(\frac{1}{e}-1)(x+1)\\ q(x)=(3e-1)x-e-1. p(x)=(e11)(x+1)q(x)=(3e1)xe1. p , q p,q p,q y = b y=b y=b的交点分别为 x 3 , x 4 x_3,x_4 x3,x4,易得
x 1 > x 3 , x 2 < x 4 x_1>x_3,x_2<x_4 x1>x3,x2<x4

x 3 = − 1 + e b − e + 1 x 4 = b + e + 1 3 e − 1 x_3=-1+\frac{eb}{-e+1}\\ \\ x_4=\frac{b+e+1}{3e-1} x3=1+e+1ebx4=3e1b+e+1

所以 x 2 − x 1 < x 4 − x 3 = 1 + b + e + 1 3 e − 1 + e b e − 1 x_2-x_1<x_4-x_3=1+\dfrac{b+e+1}{3e-1}+\dfrac{eb}{e-1} x2x1<x4x3=1+3e1b+e+1+e1eb

利用切线交叉放缩

证毕。

这里选取的不等式是两支线性不等式,显然可以选取其他函数拟合,但是会使中间零点的求解变得复杂,当然,可以获得更高的精度。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值