关于高考函数双变量问题处理方法:交叉放缩
B y \mathtt{By} By t r a n s f o r n e t _ 2005 \space{}\mathfrak {transfornet\_2005} transfornet_2005
1.一点说明
所有关于函数的涉及到两个变量的问题都可以被称为双变量问题,我们这里所说的双变量问题是指函数(或它的n阶导数)两个零点之间的关系,也即形如
F ( x 1 , x 2 ) ∼ k F(x_1,x_2) \sim k F(x1,x2)∼k
的问题。它包括但不限于极值点偏移类问题。有人也把它叫做脱胎于极值点偏移的双变量问题。
2.理论
关于双变量问题我们有两种处理方法。
1.转换为单变量
2.交叉放缩
这里的“主要”甚至可以去掉。读者马上可以看到,你们课堂上老师讲的各种方法实际上都可以归为这两类。
交叉放缩基本思想:
如果一个函数 f ( x ) f(x) f(x)的两个零点 x 1 , x 2 x_1,x_2 x1,x2的不等关系,比如 x 1 − x 2 < k x_1-x_2<k x1−x2<k,不容易证明,我们可以构建出一个新的函数 g ( x ) g(x) g(x),使得 g ( x ) g(x) g(x)的两个零点 x 3 , x 4 x_3,x_4 x3,x4满足 x 1 < x 3 , x 2 > x 4 x_1<x_3,x_2>x_4 x1<x3,x2>x4且容易证明 x 3 − x 4 < k x_3-x_4<k x3−x4<k,那么我们就有 x 1 − x 2 < x 3 − x 4 < k x_1-x_2<x_3-x_4<k