【NLP论文阅读】—— A Neural Conversation Model

本文介绍了一种基于seq2seq的新型对话模型,它能进行端到端训练,减少了对手工规则的依赖。虽然初步结果显示即使优化了非标准目标函数也能实现良好对话,但模型在连续性方面存在不足。传统对话模型受限于特征工程且局限于特定领域,该模型提供了改进。
摘要由CSDN通过智能技术生成

摘要:

本文提出的模型是基于seq2seq,能够进行end2end的训练,因此相较于以往的研究只需要更少的handcraft rules。

同时根据初步的结果显示,该模型尽管优化了一个错误的目标函数也能够对话的不错;此外,该模型既能从已有的训练集中提取信息同时也能从嘈杂的电影字幕等数据集提取信息,

缺点:缺乏连续性。

研究背景:

在以往的对话模型中,由于提问与回答之间的映射复杂,使得语言模型拘泥于狭窄的域之间,同时也要进行大量的特征工程。该模型帮助解决了这些问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值