摘要:
本文提出的模型是基于seq2seq,能够进行end2end的训练,因此相较于以往的研究只需要更少的handcraft rules。
同时根据初步的结果显示,该模型尽管优化了一个错误的目标函数也能够对话的不错;此外,该模型既能从已有的训练集中提取信息同时也能从嘈杂的电影字幕等数据集提取信息,
缺点:缺乏连续性。
研究背景:
在以往的对话模型中,由于提问与回答之间的映射复杂,使得语言模型拘泥于狭窄的域之间,同时也要进行大量的特征工程。该模型帮助解决了这些问题。
摘要:
本文提出的模型是基于seq2seq,能够进行end2end的训练,因此相较于以往的研究只需要更少的handcraft rules。
同时根据初步的结果显示,该模型尽管优化了一个错误的目标函数也能够对话的不错;此外,该模型既能从已有的训练集中提取信息同时也能从嘈杂的电影字幕等数据集提取信息,
缺点:缺乏连续性。
研究背景:
在以往的对话模型中,由于提问与回答之间的映射复杂,使得语言模型拘泥于狭窄的域之间,同时也要进行大量的特征工程。该模型帮助解决了这些问题。