官网介绍
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
相关链接
PaddleOCR-Github地址:PaddleOCR
本篇教程所需服务器地址(注册送5元相当于2小时,填写邀请码再送3元 UDW98M):仙宫云
友情视频:哔哩哔哩
部署教程
1.登录仙宫云,进入控制台,点击立即开始部署
2.选择RTX 4090
3.选择镜像,确认部署(其他配置默认即可)
4.等待部署完成
5.部署完成后点击打开,进入服务器
6.双击打开终端
7.在终端clone源码
git clone https://github.com/PaddlePaddle/PaddleOCR.git
8*.学术加速
如果clone很慢使用仙宫云学术加速来clone,在终端输入以下命名
. /accelerate/start
git clone https://github.com/PaddlePaddle/PaddleOCR.git
9.安装PaddlePaddle
本教程服务器安装的是CUDA,在终端使用以下命令安装,建议源码和PaddlePaddle分开一起在终端运行,节省时间!
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
10.安装PaddleOCR whl包
pip install "paddleocr>=2.0.1"
对于Windows环境用户:直接通过pip安装的shapely库可能出现[winRrror 126] 找不到指定模块的问题
。建议从这里下载shapely安装包完成安装。
11.测试PaddleOCR(部署完成)
在终端cd到PaddleOCR目录下,运行以下命令进行ocr识别
注:要先把图片上传到服务器哦
我这里在系统磁盘PaddleOCR下建了一个test用于存放测试的图片
注:建好直接把本地的图片拖拽进去就可以,最好重命名一下方便命令识别
完成以上操作后,可以进行oct识别了,命令如下
paddleocr --image_dir test/11.jpg --use_angle_cls true --use_gpu true
其中test/11.jpg为需要识别的图片,末尾的true表示是否使用GPU加速,本教程服务器可以使用GPU加速则为true
问题说明
lmportError: libGL.so.1: cannot open shared object file: No such file or directory
这个报错表明系统缺少 OpenGL 库文件 libGL.so.1
,这可能是由于缺少相应的软件包或者路径配置不正确导致的。
通过安装 libgl1-mesa-glx
软件包来解决这个问题。
apt-get install libgl1-mesa-glx
如果使用的是其他 Linux 发行版,请根据包管理器安装相应的 libgl
包。
如果使用的是其他操作系统,比如 Windows 或 macOS,可能需要按照该操作系统的方法来安装相应的 OpenGL 库文件。
安装完毕后,不再出现这个报错了。