PaddleOCR(部署教程)强推:仙宫云的学术加速

官网介绍

PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。

相关链接

PaddleOCR-Github地址:PaddleOCR

本篇教程所需服务器地址(注册送5元相当于2小时,填写邀请码再送3元 UDW98M):仙宫云

友情视频:哔哩哔哩

部署教程

1.登录仙宫云,进入控制台,点击立即开始部署

2.选择RTX 4090

3.选择镜像,确认部署(其他配置默认即可)

4.等待部署完成

5.部署完成后点击打开,进入服务器

6.双击打开终端

7.在终端clone源码

git clone https://github.com/PaddlePaddle/PaddleOCR.git

8*.学术加速

如果clone很慢使用仙宫云学术加速来clone,在终端输入以下命名

. /accelerate/start

git clone https://github.com/PaddlePaddle/PaddleOCR.git

9.安装PaddlePaddle

本教程服务器安装的是CUDA,在终端使用以下命令安装,建议源码和PaddlePaddle分开一起在终端运行,节省时间!

python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple

10.安装PaddleOCR whl包

pip install "paddleocr>=2.0.1"

对于Windows环境用户:直接通过pip安装的shapely库可能出现[winRrror 126] 找不到指定模块的问题。建议从这里下载shapely安装包完成安装。

11.测试PaddleOCR(部署完成)

在终端cd到PaddleOCR目录下,运行以下命令进行ocr识别

注:要先把图片上传到服务器哦

我这里在系统磁盘PaddleOCR下建了一个test用于存放测试的图片

建好直接把本地的图片拖拽进去就可以,最好重命名一下方便命令识别

完成以上操作后,可以进行oct识别了,命令如下

paddleocr --image_dir test/11.jpg --use_angle_cls true --use_gpu true

其中test/11.jpg为需要识别的图片,末尾的true表示是否使用GPU加速,本教程服务器可以使用GPU加速则为true

问题说明

lmportError: libGL.so.1: cannot open shared object file: No such file or directory

这个报错表明系统缺少 OpenGL 库文件 libGL.so.1,这可能是由于缺少相应的软件包或者路径配置不正确导致的。

通过安装 libgl1-mesa-glx 软件包来解决这个问题。

apt-get install libgl1-mesa-glx

如果使用的是其他 Linux 发行版,请根据包管理器安装相应的 libgl 包。

如果使用的是其他操作系统,比如 Windows 或 macOS,可能需要按照该操作系统的方法来安装相应的 OpenGL 库文件。

安装完毕后,不再出现这个报错了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值