考研算法35天:三元组的最小距离 【双指针,滑动窗口,多路归并】

该文章探讨了如何优化多路归并算法,特别是在处理已排序的三个数组时,避免额外的空间复杂度。通过使用三个指针同时比较数组中的元素,动态计算最小值,从而在不增加额外空间的情况下找到最小距离。代码示例展示了如何遍历和更新指针以达到目标。
摘要由CSDN通过智能技术生成

算法详解

多路归并;多路归并算法从理论到应用(易懂)_留恋单行路的博客-CSDN博客

多路归并就是将多个已经归并排序排好序的数组再进行排序(不一定是通过归并排序)。

算法题目

这道题就是一般做法是先通过排序将三个数组排好然后再进行三指针求最小。但是我们仔细考虑一下,如果我们先将这三个数组排好序那么势必需要额外开一个数组,那么空间复杂度就变成了O(N)。如果我们在排序的同时去取最小距离呢?我们就不需要开一个额外的数组了。 但是那样咋做呢?我们来模拟一下吧。

假如现在我们已经找到三个点了,分别是a,b,c;那么我们如何求例题中那个式子的最小值呢?其实我们可以将例题中的式子换一下。就变成了len = 2 * (max(a,b,c) - min(a,b,c)).如下图

 

然后,继续:那么我们如何才能找到那三个指针呢?我认为只需要三个指针每次如果谁小于等于其他两个指针就算一次res(式子的值)=(max - min)*2。然后将最小的那个指针向后移动(目的:减小三个指针之间的值)。

#include <iostream>
using namespace std;

const int N = 100010; 
long long int a[N];
long long int b[N];
long long int c[N];

int main(){
    long long int  l,n,m;
    cin>>l>>n>>m;
    for(int i=0;i<l;i++)cin>>a[i];
    for(int i=0;i<n;i++)cin>>b[i];
    for(int i=0;i<m;i++)cin>>c[i];
    
    long long int res = 1e18;
    int i,j,k;
    long long int x,y,z;
    for( i=0,j=0,k=0;i<l&&j<n&&k<m;){
        x=a[i], y=b[j], z=c[k];
        res = min(res,max(x,max(y,z)) - min(x,min(y,z)));
        if(x<=y&&x<=z) i++;
        else if(y<=x&&y<=z) j++;
        else k++;
    }
    cout<<res*2;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值