#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1010;
//重点在建图!
/*步骤:1.先初始化距离dist[1] = 0,dist[i] = INF;2.for循环,i从0到n循环
* (已经确定最短距离的点放到s里面),找到不在s中的距离最近的点t,把t加到s里面,
* 用t更新其他点的距离
*/
int n, m;
int g[N][N], dis[N];
bool st[N];
int Dijkstra()
{
memset(dis, INF, sizeof(dis));
dis[1] = 0;
for (int i = 0; i < n; i++)
{
int t = -1;
for (int j = 1; j <= n; j++)
{
if (!st[j] && (t == -1 || dis[t] > dis[j])) t = j;
}
st[t] = true;
for (int j = 1; j <= n; j++)
{
dis[j] = min(dis[j], dis[t] + g[t][j]);
}
}
if (dis[n] == INF) return -1;
else return dis[n];
}
int main()
{
cin >> n >> m;
memset(g, INF, sizeof(g));
for (int i = 1; i <= m; i++)
{
int start, end, len;
cin >> start >> end >> len;
g[start][end] = g[end][start] = len;
}
int t = Dijkstra();
cout << t << endl;
return 0;
}
2.堆优化版的Djikstra算法:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int>PII;
const int N=1e6+10;
const int INF=0x3f3f3f3f;
int n,m;
int h[N],e[N],w[N],ne[N],idx=0;
int dist[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b;
ne[idx]=h[a];
w[idx]=c;
h[a]=idx++;
}
int dijkstra()
{
memset(dist,INF,sizeof(dist));
priority_queue<PII,vector<PII>,greater<PII>>heap;
dist[1]=0;
heap.push({0,1});
while(heap.size())
{
auto t=heap.top();
heap.pop();
int p=t.second;
if(st[p]) continue;
st[p]=1;
for(int i=h[p];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[p]+w[i])
{
dist[j]=dist[p]+w[i];
heap.push({dist[j],j});
}
}
}
if(dist[n]==INF) return -1;
return dist[n];
}
int main()
{
memset(h,-1,sizeof(h));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
printf("%d\n",dijkstra());
return 0;
}
3.Bellman_ford算法
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=510,M=10010;
int n,m,k;
struct Edg{
int a;
int b;
int w;
}Edgs[M];
int dist[N],backup[N];
int bellman_ford()
{
memset(dist,0x3f,sizeof(dist));
dist[1]=0;
for(int i=0;i<k;i++)
{
memcpy(backup,dist,sizeof(dist));//backup用来做备份
for(int j=1;j<=m;j++)
{
int a=Edgs[j].a,b=Edgs[j].b,w=Edgs[j].w;
dist[b]=min(dist[b],backup[a]+w);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
Edgs[i]={a,b,c};
}
bellman_ford();
if(dist[n]>0x3f3f3f3f/2) puts("impossible");//因为存在负权边
else printf("%d\n",dist[n]);
return 0;
}
4.SPFA算法:
(1).求最短路:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1e5+10;
//spfa优化bellman_ford算法,更新过谁了,再拿谁放在队列里,然后用它更新其他的点
int n,m;
int h[N],e[N],w[N],ne[N],idx=0;
int dist[N];
bool st[N];//看这个点他是否在队列里面
void add(int a,int b,int c)
{
e[idx]=b;
ne[idx]=h[a];
w[idx]=c;
h[a]=idx++;
}
int spfa()
{
memset(dist,0x3f,sizeof(dist));
dist[1]=0;
queue<int>q;
q.push(1);
st[1]=true;
while(q.size())
{
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
//if(dist[n]==0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
memset(h,-1,sizeof(h));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
int t=spfa();
if(t==0x3f3f3f3f) puts("impossible");
else printf("%d\n",t);
return 0;
}
(2).判断负环
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1e5+10;
//这个图了只有n个点,最短路没有环的话就绝对不会超过n-1条边
//count[x]大于等于n-1了,那么一定存在负环
int n,m;
int h[N],e[N],w[N],ne[N],idx=0;
int dist[N],cnt[N];
bool st[N];//看这个点他是否在队列里面
void add(int a,int b,int c)
{
e[idx]=b;
ne[idx]=h[a];
w[idx]=c;
h[a]=idx++;
}
bool spfa()
{
queue<int>q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(q.size())
{
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
cnt[j]=cnt[t]+1;
if(cnt[j]>=n) return true;
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
}
int main()
{
memset(h,-1,sizeof(h));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
if(spfa()==true) puts("Yes");
else puts("No");
return 0;
}
5.多源最短路Floyd算法:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=1e9;
const int N=210;
//三重循环,存图是矩阵存
int n,m,t;
int d[N][N];
int main()
{
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j) d[i][j]=0;
else d[i][j]=INF;
}
}
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
d[x][y]=min(d[x][y],z);
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(d[i][j]>d[i][k]+d[k][j])
{
d[i][j]=d[i][k]+d[k][j];
}
}
}
}
while(t--)
{
int a,b;
scanf("%d%d",&a,&b);
if(d[a][b]>INF/2) puts("impossible");
else printf("%d\n",d[a][b]);
}
return 0;
}