题目描述
Dijkstra求最短路 II
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n,m≤1.5×105,
图中涉及边长均不小于 0,且不超过 10000。
数据保证:如果最短路存在,则最短路的长度不超过 109。
题解
边少节点多的场景比较适合,例如边和节点的比例接近,1:1。并且需要借助邻接表存储的形式才能使用。时间复杂度O(MlogN)
需要看看这篇->数组模拟单链表
需要注意int h[N], e[M], ne[M], w[M], idx;
实际上才是正确的定义方式h是头节点是数量,题目通常用N表示节点的数量,M表示边的数量。所以实际上我们是需要定义N个头节点,M个边的对端,M个next节点(因为一个边都连接着下一条边,即使是桶的尾节点,也需要用-1作为标识),w表示权值(一条边一个),idx定位当前尚未被使用的一个数组。
可以理解为下标标识为一个节点,通过ne[下标]可以拿到他的next,e[下标]拿到他的对边,w[下标]拿到该节点(x- > y)的权值。(注意,由于只有在初始化的时候才会更新w,所以它的起始边是由初始化决定的。也可以理解是下标所对应的桶就是起始点。)h[下标]可以获取对应节点所在的头节点。
- 并且需要注意pair<int,int> 当中第一个元素存储的是权值,第二个元素存储的是对边。这是因为pair的比较方式是从左往右进行比较,而我们只需要确保按照权值进行比较即可。
- 需要注意,每一个桶只会遍历一次,即使有重边,那么最小的边也会在最上面,且后续st数组会记录这个点,后续也不会更新这个节点了。自环实际上也会在
w[src] + distance < dist[dst]
解决,因为这样子实际上只要这个点不是负数,那么更新的时候就不会被记录。 - 优先级队列存放的是从0->该点的一个路径值,w[下标]则是这个点到另一个点的权值。
- w[i]记录的是x->y的权值,0->x的权值由优先级队列记录first,x是当前桶号,y就可以由e[i]标识。
#include<iostream>
using namespace std;
#include<queue>
#include<cstring>
const int N = 150010;
//注意 N, M的区别
int h[N],e[N],ne[N],idx = 0;
int w[N];
int dist[N];
bool st[N]; // 如果为true说明这个点的最短路径已经确定
typedef pair<int,int> PII; //先比较权值,在比较边<权值,边>
//x为起始点,y为终点,z为权值
void add(int x ,int y,int z)
{
//往n这个桶当中插入值权值未x的元素
e[idx] = y;//存dst
w[idx] = z;//存权值
ne[idx] = h[x];//存next值
h[x] = idx;//存具体的桶
++idx;
}
int Dijkstra(int n)
{
//观察桶是否有问题
// for(int i = 0;i < n; ++ i)
// {
// for(int j = h[i]; j != -1 ;j = ne[j])
// {
// cout << e[j] << " ";
// }
// cout << endl;
// }
priority_queue<PII,vector<PII>,greater<PII>> pq;
pq.push({0,0}); //第一个是权值,因为需要先比较权值,而第二个谁靠前不重要。
dist[0] = 0;
while(!pq.empty())
{
//O(1)获得一个最小的边
PII p = pq.top();
pq.pop();
//更新p点相连的所有点
int src = p.second;//对边,一开始是0
//cout <<src << " " << h[src] << endl;
int distance = p.first;
if(st[src]) continue;
st[src] = true;
//从链表的头开始取数据
for(src = h[src] ;src != -1 ; src = ne[src])
{
//cout<< src << endl;
//更新对端,dst的内容
int dst = e[src];//获取对端
if(w[src] + distance < dist[dst])
{
dist[dst] = w[src] + distance;
pq.push({dist[dst],dst});
}
}
}
if(dist[n - 1] == 0x3f3f3f3f)
{
return -1;
}
else
{
return dist[n - 1];
}
}
int main()
{
int n,m;
cin >> n >> m;
memset(dist,0x3f,sizeof(dist));//初始化距离矩阵
memset(h,-1,sizeof(h));//初始化链表头
while(m --)
{
int x,y,z;
cin >> x >> y >> z;
add(x - 1,y - 1,z);
}
int res = Dijkstra(n);
cout << res << endl;
return 0;
}
end
- 喜欢就收藏
- 认同就点赞
- 支持就关注
- 疑问就评论