A
题意:告诉你一周的长度n,其中有三天是休息日,其中一天固定在第n天,让你选择另外两天在哪,规定:休息日不能相邻。求出最大的
其中l为工作日的长度。
思路: 我们在第2天和第n天定为休息日,然后在中间再确定一个休息日。最优的情况就是尽量构造一个等差数列,找到最大的公差d满足等差数列的前3项和小于等于n-3。前两项构成公差d的等差数列,剩余天数放到第三项,再计算答案即可。
#include <bits/stdc++.h>
#define lowbit(x) x&(-x)
#define ios std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0)
#define PII pair<int,int>
typedef long long ll;
const int N=1e6+10;
const int inf=0x3f3f3f3f;
using namespace std;
/*
(1+1+2d)*3/2>n-3
(2+2d)*3/2
(1+d)*3>n-3
*/
int n;
int a[5];
bool check(int x)
{
if((1+x)*3<=n-3) return 1;
else return false;
}
void solve()
{
cin>>n;
int l=0,r=n;
while(r>l)
{
int mid=(l+r+1)>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
a[0]=1,a[1]=1+l,a[2]=n-5-l;
cout<<min(abs(a[1]-a[0]),min(abs(a[2]-a[1]),abs(a[2]-a[0])))<<'\n';
}
int main()
{
//ios;
int _t=1;
cin>>_t;
while(_t--) solve();
system("pause");
return 0;
}
B
题意:给定n个数,每次操作可以使一个数x分解成x=y+z,可以对分解后的数继续分解,问最少多少次操作后,任意两数中,较大数不会大于等于较小数的两倍
思路:我们先找到数组中最小的数mi,这个数一定是不需要操作的;将其他数分解成小于2*mi的数即可,也就是比较待分解的数与2*mi-1的关系,若(k+1)*(2*mi-1)>=x>k*(2*mi-1),那么操作次数为k
#include <bits/stdc++.h>
#define lowbit(x) x &(-x)
#define ios \
std::ios::sync_with_stdio(false); \
cin.tie(0), cout.tie(0)
#define PII pair<int, int>
typedef long long ll;
const int N = 110;
const int inf = 0x3f3f3f3f;
using namespace std;
int n;
int a[N];
void solve()
{
cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i];
sort(a + 1, a + n + 1);
ll ans = 0;
for (int i = 2; i <= n; i++)
{
ans+=((int)ceil(1.0*a[i]/(2*a[1]-1))-1);
}
cout << ans << '\n';
}
int main()
{
// ios;
int _t = 1;
cin >> _t;
while (_t--)
solve();
system("pause");
return 0;
}
C
题意:给定字符串,让你求出映射后字典序最小的字符串,映射规则需满足长度为26的环。
思路:贪心,从左到右遍历字符串,若当前字符还没有制定映射规则,我们就将其映射到可以映射范围内最小的字符。
假设当前字符x还没映射规则 ,假设还没有字符映射到a,那么理论上我们是可以将x映射到a的,但若存在a->...->x,但若这条链的长度不是26,我们是不能将x映射到a的,否则会形成一个闭环,无法将剩余字符加入环中。
#include <bits/stdc++.h>
#define lowbit(x) x&(-x)
#define ios std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0)
#define PII pair<int,int>
typedef long long ll;
const int N=1e6+10;
const int inf=0x3f3f3f3f;
using namespace std;
int n;
string s;
void solve()
{
cin>>n;
cin>>s;
map<char,char>mp,mmp;
for(int i=0;i<n;i++)
{
if(mp[s[i]]) continue;
else
{
for(char t='a';t<='z';t++)
{
if(s[i]==t) continue;
if(!mmp[t])//没有字母映射到t
{
int cnt=1;
char tem=t;
while(tem!=s[i]&&mp[tem])
{
tem=mp[tem];
cnt++;
}
if(tem==s[i]&&cnt<26) continue;
mp[s[i]]=t;
mmp[t]=s[i];
break;
}
}
}
}
for(int i=0;i<n;i++) cout<<mp[s[i]];
cout<<'\n';
}
int main()
{
//ios;
int _t=1;
cin>>_t;
while(_t--) solve();
system("pause");
return 0;
}
D
题意:给定n张卡牌,每张卡片有k种属性,每种属性取值0,1,2,三张卡片为一组,5张卡片为一个集合,一组称为good当且仅当这三张牌的每一种属性要么全相等,要么全不同。问满足集合至少含有2组good的集合数。
思路:先考虑什么样的集合满足至少含有2组good,我们发现当两个good组含有一个共同的牌时,这些牌组成的集合就是满足题意的。 没有共同牌的两组,一定不能组成满足题意的集合。因为任意两张牌可以唯一确定第三张牌。题目转化成每张卡牌所在good组的数量。我们用三进制来储存当前牌的属性。两重for循环遍历任意两张卡片来求第三张卡片是否出现过即可,如果出现过就直接将3张卡片的贡献度都加1,但是这样会重复计算,也就是说比如第1,2,3张卡片可以合成一个good组,那么我们在枚举(1,2),(1,3),(2,3)时,这三张牌的贡献都会计算一次,所以我们需要将每张牌的贡献除以3得到不重复的贡献。最后我们遍历所有牌所在good组的数量t,对于包含某张卡片的任意两个组都可以组成一个good的集合,对答案的贡献为C(t,2)。
#include <bits/stdc++.h>
#define lowbit(x) x&(-x)
#define ios std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0)
#define PII pair<int,int>
typedef long long ll;
const int N=1e3+10;
const int inf=0x3f3f3f3f;
using namespace std;
int n,k;
int a[N][25];
map<ll,bool>st;
map<ll,int>ans;
ll cal(int r)
{
ll ret=0;
for(int i=1;i<=k;i++)
{
ret=ret*3+a[r][i];
}
return ret;
}
void solve()
{
cin>>n>>k;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=k;j++)
cin>>a[i][j];
st[cal(i)]=1;
}
for(int i=1;i<=n;i++)
{
ll s1=cal(i);
for(int j=i+1;j<=n;j++)
{
ll s2=cal(j);
ll tem=0;
for(int l=1;l<=k;l++)
{
if(a[i][l]==a[j][l])
{
tem=tem*3+a[i][l];
}
else
{
tem=tem*3+(3^a[i][l]^a[j][l]);
}
}
if(st[tem])
{
ans[s1]++;
ans[s2]++;
ans[tem]++;
}
}
}
ll ret=0;
for(int i=1;i<=n;i++)
{
ll s=cal(i);
if(ans[s])
{
ans[s]/=3;
ret+=(ans[s]*(ans[s]-1))/2;
}
}
cout<<ret<<'\n';
}
int main()
{
//ios;
int _t=1;
//cin>>_t;
while(_t--) solve();
system("pause");
return 0;
}