题目描述
M(1 ≤ M ≤ 20)辆车需要在一条不能超车的单行道上到达终点。起点与终点的距离为 N(1 ≤ N ≤ 400)。
速度较快的车在追上前车后,只能以前车的速度继续行驶。现要求出最后一辆车到达目的地花费的时间。
注: 每辆车固定间隔 1 小时出发,比如第一辆车在0时出发,第二辆车在1时出发,以此类推。
输入描述
- 第一行输入两个数字:M 和 N,分别代表车辆的数量和到终点的距离,以空格分隔。
- 接下来的 M 行,每行一个数字 S,代表每辆车的速度。每辆车的速度满足条件:0 < S < 30。
输出描述
- 输出最后一辆车到达目的地所花费的时间。
用例
输入
2 11
3
2
输出
5.5
说明
- 为2辆车,距离为11,第一辆车在0时出发,速度为3;第二辆车在1时出发,速度为2。
- 第一辆车的行驶时间为 ( \frac{11}{3} \approx 3.67 ) 小时,到达时间为3.67。
- 第二辆车的行驶时间为 ( \frac{11}{2} = 5.5 ) 小时,
订阅专栏 解锁全文
918

被折叠的 条评论
为什么被折叠?



