简单安装pytorch环境

1.升级pip命令

python -m pip install --upgrade pip

2.将全局的包索引地址设置为清华大学镜像源

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

3.创建一个3.9.0版本的python虚拟环境,虚拟环境名自行设置,将env_name修改即可

conda create -n env_name python=3.9.0 -y

4.进入虚拟环境

activate env_name

5.pip 安装CPU版本的torch

pip3 install torch torchvision torchaudio

6.检查pytorch环境是否安装成功,在安装好的环境里输入python,然后输入以下代码

import torch
print(torch.__version__)

如果成功出现版本号说明安装成功

安装GPU版本

1.安装cuda和cudnn

(1)首先查看自己的电脑是否能够安装cuda和cudnn,以及能够安装的版;Win+R打开运行窗口,输入以下命令

nvidia-smi

或者通过搜索nvidia ,进去之后点击左下角的系统信息。然后选择组件,就可以查到主机允许安装的最高版本的cuda。

如图可知本机可支持安装的最高的cuda版本是11.6 .

2.接下来最好是创建一个虚拟环境,进行环境管理。在安装了anaconda的情况下,使用win+r,通过cmd打开命令,输入:

conda create -n pytorch python=3.9.0 -y

 创建一个名为:pytorch的虚拟环境:

接着输入:

conda activate pytorch

进入虚拟环境后;
先进pytorch官网:

PyTorch

然后可以选择安装以前的版本,找到适合自己电脑的cuda版本,或者低于自己电脑版本的cuda,例如我的是cuda11.6,就选择下面这句:

pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116

在命令行进行下载即可。

3.检验是否安装好

在命令行下输入python,进入编译:

然后输入下面的代码:

import torch
torch.cuda.is_available()

如果返回是Ture,就说明安装成功了。 

### 如何在不同操作系统上安装 PyTorch 环境 #### 安装前准备 为了确保成功安装 PyTorch,需确认系统已满足基本条件。例如,在 Windows 和 Linux 上通常需要 Python 版本不低于 3.7[^1]。对于 GPU 支持的情况,则需要 NVIDIA 驱动程序版本兼容 CUDA 的最低需求。 #### 在 Windows 上安装 PyTorch Windows 用户可以通过 `pip` 命令完成安装过程。以下是具体命令: ```bash pip install torch torchvision torchaudio -f https://download.pytorch.org/whl/cu111/torch_stable.html ``` 此命令适用于支持 CUDA 11.1 的设备配置[^2]。如果不需要 GPU 加速功能或者当前硬件不支持 CUDA,可以改为 CPU-only 版本的安装链接。 #### 在 macOS 上安装 PyTorch macOS 平台默认仅提供基于 CPU 的计算能力,因此无需指定额外参数即可执行如下操作来设置环境: ```bash pip install torch torchvision torchaudio ``` #### 在 Linux 上安装 PyTorch Linux 发行版同样能够通过 pip 工具轻松部署所需库文件。针对具备 NVIDIA 显卡并希望启用相应加速特性的场景下,推荐采用以下方式实现依赖项引入: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 这里假设目标机器配备有适配 cuDNN 及其对应驱动版本号为 CU118 的图形处理器单元;否则继续沿用不含任何附加选项的标准流程即足够应对大多数日常开发任务需求。 #### 验证安装是否成功 无论在哪种平台上完成了上述任一方法之后都应当测试一下实际效果以判断整个环节是否存在潜在错误风险点。打开终端窗口输入下面几行代码片段来进行简单校验工作: ```python import torch print(torch.__version__) if torch.cuda.is_available(): print('CUDA is available') else: print('No CUDA support detected.') ``` 当输出显示 Torch 库的具体编号以及存在可用 CUDA 资源时则表明一切正常运行良好^。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值