1 机器翻译
机器翻译是指将一段文本从一种语言自动翻译到另一种语言。机器翻译的历史可以追溯到20世纪50年代。早期的机器翻译系统主要采用基于规则的方法,通过语法和词汇规则来进行翻译。然而,这些系统在处理复杂的语言结构和多义词方面存在挑战,翻译质量有限。
到了20世纪90年代,随着计算能力的提升和统计方法的兴起,统计机器翻译(SMT)开始成为主流。SMT利用大规模的双语语料库学习源语言和目标语言之间的统计规律,通过短语和语言模型进行翻译。这种方法在一定程度上提高了翻译质量,但仍然面临语言歧义和长距离依赖等问题。
21世纪初,随着深度学习和神经网络技术的进步,神经网络机器翻译(NMT)开始崭露头角。NMT利用深度神经网络模型,通过编码器-解码器结构学习源语言和目标语言之间的映射关系,能够更好地处理长距离依赖和语境信息,进一步提升了翻译质量和流畅度因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。
1.1 读取和预处理数据
我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。
!tar -xf d2lzh_pytorch.tar
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
# sys.path.append("..")
import d2lzh_pytorch as d2l
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(torch.__version__, device)
1.5.0 cpu
接着定义两个辅助函数对后面读取的数据进行预处理。
# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
all_tokens.extend(seq_tokens)
seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
all_seqs.append(seq_tokens)
# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
vocab = Vocab.Vocab(collections.Counter(all_tokens),
specials=[PAD, BOS, EOS])
indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
return vocab, torch.tensor(indices)
为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'
隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len
。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。
def read_data(max_seq_len):
# in和out分别是input和output的缩写
in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
with io.open('fr-en-small.txt') as f:
lines = f.readlines()
for line in lines:
in_seq, out_seq = line.rstrip().split('\t')
in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
continue # 如果加上EOS后长于max_seq_len,则忽略掉此样本
process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
in_vocab, in_data = build_data(in_tokens, in_seqs)
out_vocab, out_data = build_data(out_tokens, out_seqs)
return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)
将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。
max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]
(tensor([ 5, 4, 45, 3, 2, 0, 0]), tensor([ 8, 4, 27, 3, 2, 0, 0]))
1.2 含注意力机制的编码器—解码器
我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。
1.2.1 编码器
在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU
实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。
class Encoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
drop_prob=0, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)
def forward(self, inputs, state):
# 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
return self.rnn(embedding, state)
def begin_state(self):
return None
下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state
就是一个元素,即隐藏状态;如果使用长短期记忆,state
是一个元组,包含两个元素即隐藏状态和记忆细胞。
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)
(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))
1.2.2 注意力机制
我们将实现10.11节(注意力机制)中定义的函数 a a a:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear
实例均不使用偏差。其中函数 a a a定义里向量 v \boldsymbol{v}