最短路径 (30 分)

给定一个有N个顶点和E条边的无向图,顶点从0到N−1编号。请判断给定的两个顶点之间是否有路径存在。如果存在,给出最短路径长度。 这里定义顶点到自身的最短路径长度为0。 进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。 随后E行,每行给出一条边的两个顶点。每行中的数字之间用1空格分隔。 最后一行给出两个顶点编号i,j(0≤i,j<N),i和j之间用空格分隔。

输出格式:

如果i和j之间存在路径,则输出"The length of the shortest path between i and j is X.",X为最短路径长度, 否则输出"There is no path between i and j."。

输入样例1:

7 6
0 1
2 3
1 4
0 2
1 3
5 6
0 3

输出样例1:

The length of the shortest path between 0 and 3 is 2.

输入样例2:

7 6
0 1
2 3
1 4
0 2
1 3
5 6
0 6

输出样例2:

There is no path between 0 and 6.
#include<bits/stdc++.h>
#define inf 999999999
using namespace std;
int G[15][15];//floyd算法 
int main()
{
	int n,e,i,j,k;
	cin>>n>>e;//输入顶点和边数 
	for(i=0;i<=n;i++)//对G初始化,这里i<=n这里必须要有等号,感觉是题目的bug 
	{
		for(j=0;j<=n;j++)
		{
			if(i==j)
			G[i][j]=0;
			else
			G[i][j]=inf;
		}
	}
	int x,y;
	for(i=0;i<e;i++)
	{
		cin>>x>>y;//输入路径 
		G[x][y]=1;
		G[y][x]=1;
	}
	cin>>x>>y;//输入需要求的两个地点 
	for(k=0;k<n;k++)//Floyd算法核心 
	{
		for(i=0;i<n;i++)
		{
			for(j=0;j<n;j++)
			{
				if(G[i][k]<inf&&G[k][j]<inf&&G[i][j]>G[i][k]+G[k][j])
				{
					G[i][j]=G[i][k]+G[k][j];
				}
			}
		}
	}
	if(G[x][y]<inf)
	{
		printf("The length of the shortest path between %d and %d is %d.\n",x,y,G[x][y]);
	}
	else
	{
		printf("There is no path between %d and %d.\n",x,y);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值