时间限制: 1s 内存限制: 128MB 提交: 6975 解决: 3273
题目描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出
输出数据为一个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 L 5
样例输出
1 3
#include<bits/stdc++.h>
using namespace std;
const int N = 105;
int a[105][105],m,n;
int x,y,k;
char ch;
map<char,char> ri = {
{'U','R'},{'D','L'},{'L','U'},{'R','D'}
};
map<char,char> le = {
{'U','L'},{'D','R'},{'L','D'},{'R','U'}
};
map<char,int> dx = {
{'U',-1},{'D',1},{'L',0},{'R',0}
};
map<char,int> dy = {
{'U',0},{'D',0},{'L',-1},{'R',+1}
};
struct node
{
int x;
int y;
char ch;
};
queue<node> q;
int cnt;
void bfs()
{
q.push({x,y,ch});
while(!q.empty())
{
node t = q.front();
q.pop();
int xx = t.x,yy = t.y;
char ch = t.ch;
if(a[xx][yy])
{
ch = ri[ch];
a[xx][yy] = 0;
xx += dx[ch];
yy += dy[ch];
}
else
{
ch = le[ch];
a[xx][yy] = 1;
xx += dx[ch];
yy += dy[ch];
}
q.push({xx,yy,ch});
cnt++;
if(cnt==k)
{
cout<<xx<<' '<<yy<<endl;
break;
}
}
}
int main()
{
cin>>m>>n;
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
cin>>a[i][j];
}
}
cin>>x>>y>>ch>>k;
bfs();
return 0;
}