最小生成树——Prim算法

这篇博客介绍了如何使用Prim算法求解无向图的最小生成树。内容包括Prim算法的基本思想、实现过程和代码示例。文章指出,Prim算法适用于稠密图,时间复杂度为O(n*n)。在无法找到最小生成树的情况下,算法将返回"impossible"。此外,还对比了Prim算法和Kruskal算法在处理不同图类型时的效率差异。
摘要由CSDN通过智能技术生成

题目:AcWing 858. Prim算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数

最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中的集合,E 表示图中的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500
1≤m≤105
图中涉及边的边权的绝对值均不超过 10000

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

思想

1、一开始最小生成树怎么也看不懂,后来去小破站搜“最小生成树动画演示”,看了一遍就懂了,最小生成树基于贪心思想

2、Prim算法是依靠不断更新三个列表来进行的:

        存储  该顶点 是否已被选取                                                      st [i] =ture / false

        存储  连通块 到该顶点的最小距离,初始状态均为无穷大       dist [i] = INF

        存储  该顶点的父节点,初始状态均为-1,表示尚不存在         t = - 1  

3、实现过程:

        更新  顶点  (即上一步的父节点)

        扫描  最小距离列表 寻找dist

        添加  父节点

4、当所有点都添加到了连通块中,最小生成树创建完成,返回 res

代码实现

​
​
​
#include <iostream>
#include <cstring>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;

int n, m;
bool st[N];
int g[N][N], dist[N];
//邻接矩阵存储所有边

int prim() 
{
    //如果图不连通返回INF, 否则返回res
    memset(dist, INF, sizeof dist);//初始化为无穷大
    int res = 0;    //最小生成树的 权值 之和

    for (int i = 0; i < n; i++) 
    {
        int t = -1; //父节点都初始化为尚不存在

        //扫描 寻找dist并更新t
        for (int j = 1; j <= n; j++)
            //j点没有在连通块中,且(没有添加父节点 或 j点离连通块的距离比t小)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;//更新父节点
           
        //当前若不可以有 最小生成树
        if (i && dist[t] == INF) 
            return INF;

        if (i) //当前若可以有 最小生成树
            res += dist[t];
       
        //表示该点已经连通
        st[t] = true;

        //更新dist
        for (int j = 1; j <= n; j++) 
            //比较 j到连通块的距离,与j到t的距离
            dist[j] = min(dist[j], g[t][j]);
    }
    return res;
}

int main() 
{
    cin >> n >> m;
    int u, v, w;
    
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (i == j) 
                g[i][j] = 0;
            else 
                g[i][j] = INF;

    while (m--) 
    {
        cin >> u >> v >> w;
        //存无向图,且要防止重边
        g[u][v] = g[v][u] = min(g[u][v], w);
    }
    int t = prim();
    //t用于临时存储,防止执行两次函数导致最后仅返回0
    if (t == INF) 
        puts("impossible");
    else 
        cout << t << endl;
}

​

​

​

注:

1:Kruaskal算法时间复杂度为O(e*loge) e为边数。克鲁斯卡尔算法主要针对边展开,边数少时效率会很高,所以对于稀疏图有优势。这个复杂度就是快排需要的时间。

2:Prim算法的时间复杂度为O(n*n),适用于稠密图。(n为顶点数);

结论:稀疏就用Kruskal,稠密就用Prim。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值