堆的高度是log|V|,是·如何得出

堆的高度是基于堆中节点数量的对数。最小堆是一种完全二叉树,它的高度取决于树中节点的数量。 给定一个节点数量为n的完全二叉树,其高度h满足以下关系式: 2^(h-1) ≤ n ≤ 2^h - 1 对于最小堆来说,节点数量为V那么堆的高度h满足以下关系式: 2^(h-1) ≤ V ≤ 2^h - 1 取对数后得到: log2(2^(h-1)) ≤ log2(V) ≤ log2(2^h - 1) (h-1) ≤ log2(V) ≤ h - 1 + log2(2) 由于log2(2) = 1,上述式子可以简化为: (h-1) ≤ log2(V) ≤ h 因此,堆的高度h可以近似为log2(V)。 注意,这里的对数底数是2,所以堆的高度是以2为底的对数。在复杂度分析中,我们通常使用大O符号来表示复杂度,而对数的底数不会改变杂度的数量级,因此可以省略不写具体底数。因此,我们可以说堆的高度是O(logV)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值