1361
class Solution {
public:
int visited[10001] = {0};
void dfs(int idx, vector<int>& leftChild, vector<int>& rightChild, vector<int>& hash){
if(idx == -1){//边界条件,如果下标为-1,直接返回
return ;
}
if(!visited[idx]){//防止循环访问,例如leftChild数组={1,0}.如果当前idx = 1,则访问到0号元素。0作为新下标,访问到1.
visited[idx]=1;
++hash[idx];//改点访问过,次数++
dfs(leftChild[idx],leftChild,rightChild,hash);//遍历改点左节点
dfs(rightChild[idx],leftChild,rightChild,hash);//遍历改点右节点
}
}
bool validateBinaryTreeNodes(int n, vector<int>& leftChild, vector<int>& rightChild) {
vector<int> hash(n,0);
for(int i = 0; i < n; ++i){//进行初次遍历,统计每个数字被访问的次数。
if(leftChild[i] != -1){
++hash[leftChild[i]];
}
if(rightChild[i] != -1){
++hash[rightChild[i]];
}
}
int numZero = 0;
for(int x = 0; x < n; ++x){
if(hash[x]==0){//访问次数为0,则初步认为改点是根节点
dfs(x,leftChild,rightChild,hash);//从根节点开始遍历整棵树
break;
}
}
int numOne = 0, numTwo = 0;
for(auto x: hash){
if(x == 1){//经过两次遍历,更改hash表。如果符合二叉树,那么元素1只能出现1次,剩下的元素都输2
numOne++;
}
if(x == 2){
numTwo++;
}
}
if(numTwo != n-1){
return false;
}
if(numOne != 1){
return false;
}
return true;
}
};
思路
我们先确定根节点,然后从根节点开始,遍历整棵树。如果从根节点开始遍历能够保证所有元素都只被遍历1次,则为二叉树。
解法
- 根据leftChild,rightChild遍历所有元素,出现的非-1元素在hash表中统计,表示该元素被父元素指向过。
- 如果有元素为0,则表示该元素没有父节点,所以为根节点(不考虑多个0元素,因为之后还需要从根节点遍历全树,也能判断出来
- 以根节点为起点,遍历整棵树。
- 完成遍历后,统计1,2出现的次数。
- 如果是二叉树,第一次hash遍历一定是一个0,其余全是1;第二次hash遍历全部+1
1367
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool fbs(ListNode* curListNode, TreeNode* curTreeNode){//确定当前节点为起点是否匹配
if(curListNode == NULL) return true;//链表为空,表示全部匹配完成,成功
if(curTreeNode == NULL) return false;//树节点为空,无法匹配,失败
if(curTreeNode->val != curListNode->val) return false;//当树前节点不等于链表节点
return fbs(curListNode->next,curTreeNode->right) || fbs(curListNode->next,curTreeNode->left);//匹配下一个链表元素。向左向右遍历tree
}
bool isSubPath(ListNode* head, TreeNode* root) {//遍历以head为节点的所有节点
if(root == NULL) return false;//如果当前节点为空,终止循环遍历tree
if(fbs(head,root)){ return true;}//当前节点成功,终止递归
return isSubPath(head,root->left) || isSubPath(head,root->right);//递归遍历每一个tree节点
}
};
思路
循环遍历每一个节点,以每一个节点为起始路径,查看是否能够匹配链表。
这题特殊点是:以每一个节点为开头,需要遍历每一个树节点,不好用循环解决,需要用递归遍历树节点。而和链表匹配时也需要递归,因此这题考察的重点是双递归。
一个函数负责判断以当前节点为根的子树是否符合题目要求,另一个用来遍历整个树的所有结点,具体每个结点再交给第一个函数来判断。在这个题目里面第一个函数就是dfs,第二个函数就是isSubPath。
------------摘录自评论区大佬
解法
- fbs:
- 匹配当前节点为路径开头,能否将链表匹配完成
- isSubPath
- 循环遍历树节点,以每一个节点为开头,调用dfs匹配
1457
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int dfs(TreeNode* curTreeNode, vector<int> hash){
if(curTreeNode==NULL) return 0;
if(curTreeNode->left == NULL && curTreeNode->right == NULL){//路径匹配完成
++hash[curTreeNode->val];
int numOdd = 0;
for(int i = 0; i < 10; ++i){//遍历hash
if(hash[i]&1) ++numOdd;//如果有出现奇数次数的数字,++
if(numOdd>1) return 0;//回文串最多1个奇数数字
}
return 1;
}
++hash[curTreeNode->val];
return dfs(curTreeNode->left,hash)+dfs(curTreeNode->right,hash);
}
int pseudoPalindromicPaths (TreeNode* root) {
vector<int> hash(10,0);
return dfs(root, hash);
}
};
思路
遍历每一条路径,统计数字出现次数。如果奇数次数的数字只出现0,或1次,则为回文。