求一个函数的反函数问题

本文详细介绍了如何通过两种方法求解函数的反函数,包括代入法和解方程,给出了五个具体函数的求反函数过程。涉及对数、指数运算以及绝对值处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求一个函数的反函数问题

一般有两种方法:
第一种方法:将自变量和因变量置换,然后求出类似于 y = f ( x ) y=f(x) y=f(x) 的函数即可。
第二种方法:由 y = f ( x ) y=f(x) y=f(x) 直接解出 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y),然后再置换自变量和因变量。

例一

求解 y = x + 1 3 y = \sqrt[3]{x+1} y=3x+1 的反函数。

解:

第一步: y = x + 1 3 y = \sqrt[3]{x+1} y=3x+1 改写为 x = y + 1 3 x = \sqrt[3]{y+1} x=3y+1
第二步:解出,可得: y = x 3 − 1 y=x^{3}-1 y=x31

例二

求解 y = 1 + ln ⁡ ( x + 2 ) y = 1+\displaystyle \ln (x+2) y=1+ln(x+2) 的反函数。

解:

第一步: y = 1 + ln ⁡ ( x + 2 ) y = 1+\displaystyle \ln (x+2) y=1+ln(x+2) 改写为 x = 1 + ln ⁡ ( y + 2 ) x = 1+\displaystyle \ln (y+2) x=1+ln(y+2)
第二步:即由 x = 1 + ln ⁡ ( y + 2 ) x = 1+\displaystyle \ln (y+2) x=1+ln(y+2) 可得:
ln ⁡ ( y + 2 ) = x − 1 (1) \displaystyle \ln (y+2) = x-1 \tag{1} ln(y+2)=x1(1)
y + 2 = e x − 1 (2) y+2 = e^{x-1} \tag{2} y+2=ex1(2)
y = e x − 1 − 2 (3) y = e^{x-1}-2 \tag{3} y=ex12(3)

例三

求解 y = 1 + 2 x 2 x + 1 y = 1+\frac{2^{x}}{2^{x}+1} y=1+2x+12x 的反函数。

解:

第一步: y = 1 + 2 x 2 x + 1 y = 1+\frac{2^{x}}{2^{x}+1} y=1+2x+12x 改写为 x = 1 + 2 y 2 y + 1 x = 1+\frac{2^{y}}{2^{y}+1} x=1+2y+12y
第二步:即由 x = 1 + 2 y 2 y + 1 x = 1+\frac{2^{y}}{2^{y}+1} x=1+2y+12y 可得:
2 y x + x = 2 y (1) 2^{y}x+x = 2^{y} \tag{1} 2yx+x=2y(1)
2 y ( x − 1 ) = − x (2) 2^{y}(x-1) = -x \tag{2} 2y(x1)=x(2)
2 y = x ( 1 − x ) (3) 2^{y} = \frac{x}{(1-x)} \tag{3} 2y=(1x)x(3)
y = log ⁡ 2 x 1 − x (4) y=\log_{2}\frac{x}{1-x} \tag{4} y=log21xx(4)

例四

求解 y = f ( x ) = ln ⁡ ( x + x 2 + 1 ) y = f(x) = \displaystyle \ln(x+\sqrt{x^{2}+1}) y=f(x)=ln(x+x2+1 ) 的反函数 f − 1 ( x ) f^{-1}(x) f1(x) 的表达式及其定义域。

解:

由对数的性质:
ln ⁡ a b = ln ⁡ a + ln ⁡ b \displaystyle \ln{ab} = \displaystyle \ln{a}+\displaystyle \ln{b} lnab=lna+lnb
ln ⁡ a b = ln ⁡ a − ln ⁡ b \displaystyle \ln{\frac{a}{b}} = \displaystyle \ln{a}-\displaystyle \ln{b} lnba=lnalnb
ln ⁡ a b = b ln ⁡ a \displaystyle \ln{a^{b}} = b\displaystyle \ln{a} lnab=blna
对于题目待求式: y = f ( x ) = ln ⁡ ( x + x 2 + 1 ) (1) y = f(x) = \displaystyle \ln(x+\sqrt{x^{2}+1})\tag{1} y=f(x)=ln(x+x2+1 )(1)
两边同时加负号,可得: − y = − ln ⁡ ( x + x 2 + 1 ) -y = -\displaystyle \ln(x+\sqrt{x^{2}+1}) y=ln(x+x2+1 )
− y = ln ⁡ ( x + x 2 + 1 ) − 1 -y = \displaystyle \ln(x+\sqrt{x^{2}+1})^{-1} y=ln(x+x2+1 )1
− y = ln ⁡ 1 x + x 2 + 1 -y = \displaystyle \ln\frac{1}{x+\sqrt{x^{2}+1}} y=lnx+x2+1 1
右边式子分母分子同时乘于分母的共轭式: x − x 2 + 1 x-\sqrt{x^{2}+1} xx2+1 ,可得:
− y = ln ⁡ x − x 2 + 1 ( x + x 2 + 1 ) ( x − x 2 + 1 ) -y = \displaystyle \ln\frac{x-\sqrt{x^{2}+1}}{(x+\sqrt{x^{2}+1)(x-\sqrt{x^{2}+1})}} y=ln(x+x2+1)(xx2+1 ) xx2+1
− y = ln ⁡ x − x 2 + 1 x 2 − x 2 − 1 -y = \displaystyle \ln\frac{x-\sqrt{x^{2}+1}}{x^{2}-x^{2}-1} y=lnx2x21xx2+1
− y = ln ⁡ ( x 2 + 1 − x ) -y = \displaystyle \ln({\sqrt{x^{2}+1}-x}) y=ln(x2+1 x)
e − y = x 2 + 1 − x (2) e^{-y}= \sqrt{x^{2}+1}-x\tag{2} ey=x2+1 x(2)
由(1)式两边取e可得: e y = x 2 + 1 + x (3) e^{y}= \sqrt{x^{2}+1}+x\tag{3} ey=x2+1 +x(3)
(3)式减去(2)式可得: e y − e − y = 2 x e^{y}-e^{-y}=2x eyey=2x ,那么 x = 1 2 ( e y − e − y ) x = \frac{1}{2}(e^{y}-e^{-y}) x=21(eyey)
交换上式中的 x , y x,y xy 的位置, 就是 y = f ( x ) y=f(x) y=f(x) 的反函数, 即:
y = f − 1 ( x ) = 1 2 ( e x − e − x ) , − ∞ < x < ∞ y=f^{-1}(x) =\frac{1}{2}(e^{x}-e^{-x}),-∞<x<∞ y=f1(x)=21(exex),<x<

例五

求解 y = 2 x + ∣ 2 − x ∣ y = 2x+|2-x| y=2x+∣2x 的反函数。

解:

第一步:先去掉绝对值,将方程改写为:
{ y = x + 2 , x ≤ 2 y = 3 x − 2 , x > 2 \begin{cases} y = x + 2,x≤2 \\ y = 3x - 2,x>2 \end{cases} {y=x+2,x2y=3x2,x2
直接求解 x = f ( y ) x=f(y) x=f(y) 的方式,现在分两部分来求解:
对于 y = x + 2 , x ≤ 2 y = x + 2,x≤2 y=x+2,x2 ,我们可以写成 x = y − 2 , y ≤ 4 x=y-2,y≤4 x=y2,y4
对于 y = 3 x − 2 , x > 2 y = 3x - 2,x>2 y=3x2,x2 ,我们可以写成 x = y − 2 3 , y > 4 x=\frac{y-2}{3},y>4 x=3y2,y4
综上所述,我们得出:
{ x = y − 2 , x ≤ 4 x = y − 2 3 , y > 4 \begin{cases} x = y - 2,x≤4 \\ x=\frac{y-2}{3},y>4 \end{cases} {x=y2,x4x=3y2,y4
我们将x和y互换得:
{ y = x − 2 , x ≤ 4 y = x − 2 3 , y > 4 \begin{cases} y = x - 2,x≤4 \\ y=\frac{x-2}{3},y>4 \end{cases} {y=x2,x4y=3x2,y4
所以, f ( x ) = 2 x + ∣ 2 − x ∣ 对应的反函数 f − 1 ( x ) = { y = x − 2 , x ≤ 4 y = x − 2 3 , y > 4 f(x)=2x+|2-x|对应的反函数f^{-1}(x)=\begin{cases} y = x - 2,x≤4 \\ y=\frac{x-2}{3},y>4 \end{cases} f(x)=2x+∣2x对应的反函数f1(x)={y=x2,x4y=3x2,y4


犯其至难,图其致远。
前路漫漫,行则必达!
如有不足,恳请指正,欢迎在评论区留言。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灯把黑夜烧了一个洞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值