MATLAB实现PSO-LSSVM并在C++中调用

最近利用MATLAB实现一些机器学习算法的时候想到,MATLAB的数学计算、可视化、工具箱都非常方便高效,但如果在C++中想实现同样的算法就非常麻烦,尤其是C++计算能力远远比不上MATLAB。如果在C++中调用MATLAB函数,就能在利用MATLAB数学计算能力的同时结合C++的高性能和系统级编程优势。

本文以PSO-LSSVM(基于粒子群优化算法的最小二乘支持向量机)为例,完整项目代码请看https://github.com/Frostyume/PSO-LLSVM 

目录

算法原理

PSO-LSSVM的MATLAB代码实现

LSSVM的实现

PSO优化调参的实现

C++中调用PSO-LSSVM

将MATLAB函数编译成库

具体的C++代码

可能遇到的问题

1.MATLAB的报错

2.mclInitializeApplication初始化失败

3.帧不在模块中

4.Invalid input:Null runtime instance

5.关于mwArray的报错

项目地址


算法原理

首先关于PSO和LSSVM的算法原理有很多文章珠玉在前,在此就不再赘述,有兴趣可以参考这两篇文章:

最小二乘支持向量机(LSSVM)详解

粒子群优化算法(PSO)

PSO-LSSVM的MATLAB代码实现

具体实现可以分为两部分:LSSVM的实现,以及PSO的优化调参

LSSVM的实现

MATLAB 自带的工具箱已经完成了LSSVM的实现,但出于学习目的还是自己实现一遍

首先写好RBF核函数的定义,关于SVM的核函数可以参考:SVM的核函数

function K = rbf_kernel(X1, X2, gamma)
    sqX1 = sum(X1.^2, 2);
    sqX2 = sum(X2.^2, 2);
    K = exp(-gamma * (bsxfun(@plus, sqX1, sqX2') - 2 * (X1 * X2')));
end

训练LSSVM的代码

function model = train_lssvm(trainX, trainY, C, gamma, taskType)
    % 输入:
    % trainX: 输入特征矩阵
    % trainY: 输出标签
    % C: 正则化参数
    % gamma: RBF核函数参数
    % taskType: 'classification' 或 'regression'

    % 样本数量
    [n, ~] = size(trainX);
    
    % 计算RBF核矩阵
    K = rbf_kernel(trainX, trainX, gamma);
    
    % 添加正则化项以避免矩阵奇异
    regularization_matrix = (1/C) * eye(n);
    Omega = [zeros(1, n+1); [ones(n, 1), K + regularization_matrix]];  % 形成Omega矩阵
    Y = [0; trainY];  % 形成Y向量

    % 求解线性方程组
    alpha_b = pinv(Omega) * Y;  % 使用伪逆计算
    model.alpha = alpha_b(2:end);  % 拉格朗日乘子
    model.b = alpha_b(1);          % 偏置项
    model.gamma = gamma;           % 核函数参数
    model.C = C;                   % 正则化参数
    model.trainX = trainX;         % 保存训练数据
    model.isClassification = strcmp(taskType, 'classification');  % 根据输入判断任务类型

    % 检查输出有效性
    if any(isnan(model.alpha)) || isinf(model.b)
        error('模型训练失败,输出参数无效。');
    end
end

lssvm_fitness用于计算损失,一开始只写了用于回归任务的代码,回归任务的损失函数就用均方差,想着也可以适用于分类任务就简单地加了个交叉熵损失。

function score = lssvm_fitness(trainX, trainY, C, gamma, taskType)
    % 输入:
    % trainX: 输入特征矩阵
    % trainY: 输出标签
    % C: 正则化参数
    % gamma: RBF核函数参数
    % taskType: 'classification' 或 'regression'
    % 训练LS-SVM并计算其在训练集上的损失

    % 训练LS-SVM
    model = train_lssvm(trainX, trainY, C, gamma, taskType);
    
    % 预测训练集的类别和概率
    [predictedY, scores] = predict_lssvm(model, trainX);

    if model.isClassification
        % 计算交叉熵损失
        numClasses = length(unique(trainY));
        trueLabels = full(sparse(1:length(trainY), trainY, 1, length(trainY), numClasses)); % One-hot编码
        score = -mean(sum(trueLabels .* log(scores + eps), 2));  % 交叉熵损失
    else
        % 计算均方误差
        score = sqrt(mean((predictedY - trainY).^2));  % 均方误差
    end
end

LSSVM的预测函数,对于多分类任务引入softmax

function [predicted, scores] = predict_lssvm(model, testX)
    % 输入:
    % model: 训练好的LS-SVM模型
    % testX: 待预测的输入数据
    % 输出:
    % predicted: 预测的输出结果(类别标签或回归值)
    % scores: 每个类别的概率分布(仅在分类任务中)

    % 计算RBF核矩阵
    K = rbf_kernel(testX, model.trainX, model.gamma);
    
    % 计算决策值
    decisionValues = K * model.alpha + model.b;

    if model.isClassification
        % 通过Softmax将决策值转换为概率
        scores = softmax(decisionValues);
        % 返回预测的类别标签
        [~, predicted] = max(scores, [], 2);  % 选择概率最大的类别
    else
        % 回归任务直接返回决策值
        predicted = decisionValues;  % 直接返回预测值
        scores = [];  % 对于回归,不需要概率分布
    end
end

function p = softmax(z)
    % 计算Softmax概率分布
    expZ = exp(z - max(z, [], 2));  % 数值稳定性处理
    p = expZ ./ sum(expZ, 2);
end

PSO优化调参的实现

接下来实现PSO算法并用于LSSVM的调参(C和gamma),一些参数可能需要根据实际任务数据进行调整

function [best_C, best_gamma] = pso_optimize(X_train, y_train, num_particles, max_iters, C_min, C_max, gamma_min, gamma_max, taskType)
    % 输入:
    % X_train: 训练集特征矩阵
    % y_train: 训练集标签
    % num_particles: 粒子数量
    % max_iters: 最大迭代次数
    % C_min: 正则化参数C的最小值
    % C_max: 正则化参数C的最大值
    % gamma_min: 核函数参数gamma的最小值
    % gamma_max: 核函数参数gamma的最大值
    % taskType: 任务类型('classification' 或 'regression')
    % 输出:
    % best_C: 优化后的正则化参数C
    % best_gamma: 优化后的核函数参数gamma
    
    % 设置随机种子以便重现结果
    rng(1);  % 你可以选择任何整数作为种子
    % 初始化粒子的位置和速度
    particles = rand(num_particles, 2) .* [C_max - C_min, gamma_max - gamma_min] + [C_min, gamma_min];
    velocities = rand(num_particles, 2) * 0.1;  % 初始化速度为小的随机值


    personal_best_positions = particles;
    personal_best_scores = inf(num_particles, 1);
    
    global_best_position = particles(1, :);
    global_best_score = inf;

    % PSO参数
    w = 0.8;   % 惯性权重
    c1 = 1.5;  % 个体加速度系数
    c2 = 1.5;  % 群体加速度系数

    for iter = 1:max_iters
        for i = 1:num_particles
            % 计算当前粒子的适应度
            C = particles(i, 1);
            gamma = particles(i, 2);
            score
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值