DP(动态规划)

文章介绍了动态规划在解决有限集最值问题中的应用,特别是针对01背包问题的动态规划解决方案。通过状态表示和状态计算,找到不重复选择物品以达到最大价值的方法,其中状态转移方程是关键。文章提供了一个朴素算法的示例代码,用于演示如何计算在给定体积限制下,选择物品以获得最大价值的过程。
摘要由CSDN通过智能技术生成

动态规划:有限集的最值/个数问题

(1)状态表示(化零为整)

有限集中的最值集合

属性:max,min,count

(2)状态计算(化整为零)

划分子集依据:寻找最后一个不同点

注意:1、不重复(求数量时)ps:求最大值.....可以重复

           2、不遗漏

01背包问题

eg:

 

//朴素算法 
//暴力解法 
 #include<iostream>
using namespace std;
const int N=1010;

int n,m;
int V[N],W[N];
int f[N][N];

int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>V[i]>>W[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];//左半边的子集 
			
			/*当选择1~i个物品,总体积不大于j的集合的最大值可以转化
			成选择1~i-1个物品,总体积不大于j-V[i]的集合+最后一个物
			品的价值:f[i-1][j-V[i]]+w[i] */
			if(j>=V[i]) f[i][j]=max(f[i][j],f[i-1][j-V[i]]+W[i]);
		}
	}
	cout<<f[n][m]<<endl;
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值