前缀和与差分

前缀和与差分

前缀和

  • 前缀和的定义 : 对于一个数组,若 s [ n ] = a [ 1 ] + . . . + a [ n ] ( n ≥ 1 ) s[n]=a[1]+...+a[n](n\ge1) s[n]=a[1]+...+a[n](n1)则称 s [ n ] s[n] s[n] a [ n ] a[n] a[n]前缀和

  • 例如:若有原一维数组 a [ 1 ] , a [ 2 ] , a [ 3 ] , a [ 4 ] , a [ 5 ] a[1],a[2],a[3],a[4],a[5] a[1],a[2],a[3],a[4],a[5]

    • 则有 一维前缀和数组 区间[1,4]的前缀和为 s [ 4 ] − s [ 0 ] s[4]-s[0] s[4]s[0](此处关于 s [ 0 ] s[0] s[0]的描述 稍后会做出说明。)

    • 以此类推,若求数组区间 [ l , r ] [ l , r ] [l,r]的前缀和,应为 s [ r ] − s [ r − 1 ] s[r]-s[r-1] s[r]s[r1]

    • 其中, s [ n ] = s [ n − 1 ] + a [ n ] s[n]=s[n-1]+a[n] s[n]=s[n1]+a[n]

    解释推演

    s [ r ] = a [ 1 ] + a [ 2 ] + a [ 3 ] + ⋯ + a [ l − 1 ] + a [ l ] + ⋯ + a [ r ] s[r] = a[1]+a[2]+a[3]+\cdots+a[l-1]+a[l]+\cdots+a[r] s[r]=a[1]+a[2]+a[3]++a[l1]+a[l]++a[r]

    s [ l − 1 ] = a [ 1 ] + a [ 2 ] + a [ 3 ] + ⋯ + a [ l − 1 ] s[l-1]=a[1]+a[2]+a[3]+\cdots+a[l-1] s[l1]=a[1]+a[2]+a[3]++a[l1]

    两式相减则得 s [ r ] − s [ l − 1 ] = a [ l ] + … + a [ r ] s[r]-s[l-1] = a[l]+\ldots+a[r] s[r]s[l1]=a[l]++a[r],即为所求前缀。

    由于推理公式为 s [ r ] − s [ l − 1 ] s[r]-s[l-1] s[r]s[l1],而为了保证此式的连贯性和正确性(也就是存在 s [ 1 ] − s [ 0 ] s[1]-s[0] s[1]s[0]而不出现 s [ − 1 ]    o r    a [ − 1 ] s[-1] ~~or~~ a[-1] s[1]  or  a[1]的情况)此,我们使得数组 a a a的下标从 1 1 1开始,而数组 s s s的下标从 0 0 0开始,同时请注意 s [ 0 ] s[0] s[0]的值为了不影响后续计算,应满足

    s [ 0 ] = 0 s[0]=0 s[0]=0

一维前缀和的应用

acwing.795.前缀和

输入一个长度为 n n n 的整数序列。

接下来再输入 m m m 个询问,每个询问输入一对    l    ,    r    ~~l~~,~~r~~   l  ,  r  

对于每个询问,输出原序列中从第 l l l 个数到第 r r r 个数的和。

输入格式

第一行包含两个整数 n n n m m m

第二行包含 n n n 个整数,表示整数数列。

接下来 m m m 行,每行包含两个整数 l l l r r r,表示一个询问的区间范围。

输出格式

共 m 行,每行输出一个询问的结果。

数据范围

1 ≤ l ≤ r ≤ n 1 ≤ l ≤ r ≤ n 1≤l≤r≤n1≤l≤r≤n 1lrn1lrn,

1 ≤ n , m ≤ 1000001 ≤ n , m ≤ 100000 1≤n,m≤1000001≤n,m≤100000 1n,m1000001n,m100000,
− 1000 ≤ 数 列 中 元 素 的 值 ≤ 1000 −1000≤数列中元素的值≤1000 10001000

输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
题解
#include<stdio.h>
#define N 100010
int num[N];
int s[N];

int main()
{
    int n,m;
    scanf("%d %d",&n,&m);
    for(int i = 1 ;i<=n;i++) scanf("%d",&num[i]);
    for(int i = 1 ;i<=n;i++) s[i] = s[i-1] + num[i];
    while(m--)
    {
        int l,r;
        scanf("%d %d",&l,&r);

        printf("%d\n",s[r]-s[l-1]);
    }

    return 0;

}

二维前缀和

图解

在这里插入图片描述

  • 若求蓝色区域 [ x 1 , y 1 ]   [ x 2 , y 2 ] \rm [x_1,y_1]~[x_2,y_2] [x1,y1] [x2,y2]的前缀和,则先算出 s [ x 2 ] [ y 2 ] \rm s[x_2][y_2] s[x2][y2]再减去两个黄色框的前缀和,分别为 s [ x 1 − 1 ] [ y 2 ] \rm s[x_1-1][y_2] s[x11][y2] , s [ x 2 ] [ y 1 − 1 ] \rm s[x_2][y_1-1] s[x2][y11]。此时,会发现打×区域被多减了一次,因此要再加上一次打×区域的前缀和 s [ X 1 − 1 ] [ y 1 − 1 ] \rm s[X_1-1][y_1-1] s[X11][y11]

    区间前缀和公式
    • 推出区间前缀和公式: ( x 1 , y 1 ) − ( x 2 , y 2 ) \rm (x_1,y_1)-(x_2,y_2) (x1,y1)(x2,y2)的前缀和公式为== s [ x 2 ] [ y 2 ] − s [ x 1 − 1 ] [ y 2 ] − s [ x 2 ] [ y 1 − 1 ] + s [ x 1 − 1 ] [ y 1 − 1 ] s[x_2][y_2]-s[x_1-1][y_2]-s[x_2][y_1-1]+s[x_1-1][y_1-1] s[x2][y2]s[x11][y2]s[x2][y11]+s[x11][y11]==

    二维前缀和公式

    图解
    • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fL0L2OH6-1669079357665)(前缀和与差分.assets/二维前缀和公式推导图.png)]
    • 若求 s [ i ] [ j ] s[i][j] s[i][j],则先求得蓝色框前缀和 s [ i − 1 ] [ j ] s[i-1][j] s[i1][j]加上绿色框前缀和 s [ i ] [ j − 1 ] s[i][j-1] s[i][j1],此时,类似于上图解,棕色区域的前缀和 s [ i − 1 ] [ j − 1 ] s[i-1][j-1] s[i1][j1]被加和两次,因此需要减去,再加上 a [ i ] [ j ] a[i][j] a[i][j]即可得到前缀和 s [ i ] [ j ] s[i][j] s[i][j]
    二维前缀和公式
    • s [ i ] [ j ] = s [ i − 1 ] [ j ] + s [ i ] [ j − 1 ] − s [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j] s[i][j]=s[i1][j]+s[i][j1]s[i1][j1]+a[i][j]

二维前缀和的应用

acwing.796.子矩阵的和

输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式

第一行包含三个整数 n,m,q。

接下来 n 行,每行包含 m 个整数,表示整数矩阵。

接下来 q 行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。

输出格式

共 q 行,每行输出一个询问的结果。

数据范围

1 ≤ n , m ≤ 10001 ≤ n , m ≤ 1000 1≤n,m≤10001≤n,m≤1000 1n,m10001n,m1000,
1 ≤ q ≤ 2000001 ≤ q ≤ 200000 1≤q≤2000001≤q≤200000 1q2000001q200000,
1 ≤ x 1 ≤ x 2 ≤ n 1 ≤ x 1 ≤ x 2 ≤ n 1≤x1≤x2≤n1≤x1≤x2≤n 1x1x2n1x1x2n,
1 ≤ y 1 ≤ y 2 ≤ m 1 ≤ y 1 ≤ y 2 ≤ m 1≤y1≤y2≤m1≤y1≤y2≤m 1y1y2m1y1y2m,
− 1000 ≤ 矩 阵 内 元 素 的 值 ≤ 1000 −1000≤矩阵内元素的值≤1000 10001000,

输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
题解
#include<stdio.h>
#define N 1010

int num[N][N],s[N][N];

int main()
{
    int n,m,q;
    scanf("%d %d %d",&n,&m,&q);
    
    for(int i = 1;i<=n;i++)
        for(int j = 1;j<=m;j++)
            scanf("%d",&num[i][j]);
            
    for(int i = 1 ; i<=n;i++)
        for(int j = 1 ; j<=m;j++)
            s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + num[i][j];
            
    
    while(q--)
    {
        int x,y,x1,y1;
        scanf("%d %d %d %d",&x,&y,&x1,&y1);
        printf("%d\n",s[x1][y1] - s[x-1][y1]-s[x1][y-1] + s[x-1][y-1]);
    }
    
    return 0;
}

差分

一维差分数组

  • 若存在数组 a [ 1 ] , a [ 2 ] , a [ 3 ] , ⋯   , a [ n ] a[1],a[2],a[3],\cdots,a[n] a[1],a[2],a[3],,a[n],数组 b [ 1 ] , b [ 2 ] , b [ 3 ] , ⋯   , b [ n ] b[1],b[2],b[3],\cdots,b[n] b[1],b[2],b[3],,b[n],且满足,

    • b [ 1 ] = a [ 1 ] b[1]=a[1] b[1]=a[1]

    • b [ 2 ] = a [ 2 ] − a [ 1 ] b[2]=a[2]-a[1] b[2]=a[2]a[1]

    • b [ 3 ] = a [ 3 ] − a [ 2 ] b[3]=a[3]-a[2] b[3]=a[3]a[2]

      ⋮ \vdots ⋮ \vdots $ \vdots$

    • b [ n ] = a [ n ] − a [ n − 1 ] b[n]=a[n]-a[n-1] b[n]=a[n]a[n1]

则称 b [ n ] b[n] b[n] a [ n ] a[n] a[n]的差分数组,且 a [ n ] a[n] a[n] b [ n ] b[n] b[n]的前缀和数组。

(yxc:怎样构造差分不重要,不需要了解)

应用
acwing.797.差分

输入一个长度为 n 的整数序列。

接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [ l , r ] [l,r] [l,r] 之间的每个数加上 c。

请你输出进行完所有操作后的序列。

输入格式

第一行包含两个整数 n 和 m。

第二行包含 n 个整数,表示整数序列。

接下来 m 行,每行包含三个整数 l,r,c,表示一个操作。

输出格式

共一行,包含 n 个整数,表示最终序列。

数据范围

1 ≤ n , m ≤ 100000 1≤n,m≤100000 1n,m100000,

m ≤ 100000 m≤100000 m100000,
1 ≤ l ≤ r ≤ n 1≤l≤r≤n 1lrn,
− 1000 ≤ c ≤ 1000 −1000≤c≤1000 1000c1000,
− 1000 ≤ 整 数 序 列 中 元 素 的 值 ≤ 1000 −1000≤整数序列中元素的值≤1000 10001000

输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:
3 4 5 3 4 2
题解

欲求得操作后的数组,可构造差分数组。

想得到区间 [   l   ,   r   ] [~l~,~r~] [ l , r ]中进行了 + c +c +c操作后的数组,可对差分数组中的 b [ l ] + c b[l]+c b[l]+c b [ r + 1 ] − c b[r+1]-c b[r+1]c求前缀和即可得到操作后的数组 a [ n ] a[n] a[n]

在这里插入图片描述

#include<iostream>

using namespace std;

const int N = 100010;

int n,m;
int a[N],b[N];

void insert(int l,int r,int c)
{
	b[l] += c;
	b[r+1] -= c;
}

int main()
{
	scanf("%d%d",&n,&m);
	for(int i = 1;i<=n;i++) scanf("%d",&a[i]);

	for(int i = 1;i<=n;i++) insert(i,i,a[i]);//把b[]变成a[]的差分
	
    while(m--)
    {
    	int l,r,c;
    	scanf("%d %d %d",&l,&r,&c);
    	insert(l,r,c);
	}
	
	for(int i = 1;i<=n;i++) b[i] += b[i-1];
	
	for(int i = 1;i<=n;i++) printf("%d ",b[i]);
	
	return 0;
}
  • 第21行代码向 b [ n ] b[n] b[n]中插入 a [ n ] a[n] a[n]的行为实质上是才重复定义中的 b [ n ] = a [ n ] − a [ n − 1 ] b[n]=a[n]-a[n-1] b[n]=a[n]a[n1]此操作。

二维差分数组

acwing.798.差分矩阵
应用

输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1)和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。

每个操作都要将选中的子矩阵中的每个元素的值加上 c。

请你将进行完所有操作后的矩阵输出。

输入格式

第一行包含整数 n,m,q。

接下来 n 行,每行包含 m 个整数,表示整数矩阵。

接下来 q 行,每行包含 55 个整数 x1,y1,x2,y2,c,表示一个操作。

输出格式

共 n行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。

数据范围

1 ≤ n , m ≤ 1000 1≤n,m≤1000 1n,m1000,
1 ≤ q ≤ 100000 1≤q≤100000 1q100000,
1 ≤ x 1 ≤ x 2 ≤ n 1 ≤ x 1≤x1≤x2≤n1≤x 1x1x2n1x,
1 ≤ y 1 ≤ y 2 ≤ m 1≤y1≤y2≤m 1y1y2m,
− 1000 ≤ c ≤ 1000 −1000≤c≤1000 1000c1000,
− 1000 ≤ 矩 阵 内 元 素 的 值 ≤ 1000 −1000≤矩阵内元素的值≤1000 10001000

输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
题解

在这里插入图片描述

  • 图为构造了差分之后的差分数组,欲求得原数组 ( x 1 , y 1 ) 至 ( x 2 , y 2 ) (x1,y1)至(x2,y2) (x1,y1)(x2,y2)区间进行 + C +C +C操作后的数组,则,先给差分数组 ( x 1 , y 1 ) (x1,y1) (x1,y1)进行 + C +C +C操作,此时会发现两紫框是进行了额外的操作。那么,对紫框进行 − C -C C操作,而两紫框交界处进行了一次 + C +C +C操作,两次 − C -C C操作,所以对紫框交界处再进行 + C +C +C操作。

  • 对于差分数组的构造只需要拓展一维的插入即可。

#include<stdio.h>
const int N = 1010;
int a[N][N],b[N][N];
void insert(int x1,int y1,int x2,int y2,int c)
{
    b[x1][y1] += c;
    b[x2+1][y2+1] += c;
    b[x1][y2+1] -= c;
    b[x2+1][y1] -= c;
}
int main()
{
    int n , m , q ;
    scanf("%d %d %d",&n,&m,&q);
    
    for(int i = 1;i<=n;i++)
        for(int j = 1;j<=m;j++)
            scanf("%d",&a[i][j]);
            
    for(int i = 1;i<=n;i++)
        for(int j = 1;j<=m;j++)
            insert(i,j,i,j,a[i][j]);
            
    while(q--)
    {
        int x1,x2,y1,y2,c;
        scanf("%d %d %d %d %d",&x1,&y1,&x2,&y2,&c);
        insert(x1,y1,x2,y2,c);
    }
    
    for(int i = 1;i<=n;i++)
        for(int j = 1;j<=m;j++)
            b[i][j] +=b[i-1][j] + b[i][j-1] - b[i-1][j-1];
            
    for(int i = 1;i<=n;i++)
    {
        for(int j = 1;j<=m;j++)
        {
            printf("%d ",b[i][j]);
        }
        printf("\n");
    }
    return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雲遐.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值