红黑树特点
- 规则1: 每个节点不是黑色就是红色
- 规则2:根节点为黑色
- 规则3:红色节点的父节点和子节点不能为红色
- 规则4:所有的叶子节点都是黑色(空节点视为叶子节点NIL)
- 规则5:每个节点到叶子节点的每个路径黑色节点的个数都相等。
平衡二叉树特点
- 规则1:每个节点最多只有两个子节点(二叉)
- 规则2:每个节点的值比它的左子树所有的节点大,比它的右子树所有节点小(有序)
- 规则3:每个节点左子树的高度与右子树高度之差的绝对值不超过1
二者比较
红黑树和
AVL
树都是自平衡二叉搜索树,它们的平衡维护是为了保证树的高度不至于太大,从而使树的基本操作的时间复杂度始终保持在
O(log n)
的级别内。
插入删除性能
- AVL树的平衡维护是通过每个节点的左子树高度和右子树高度之差(即平衡因子)是否为 -1、0、1来实现的,这种平衡维护要求非常严格。当一个节点的平衡因子超出了 -1、0、1 的范围时,就需要通过旋转操作来调整树的结构。因为AVL树是严格平衡的,所以在插入或删除节点时,可能需要进行多次旋转操作才能将树保持在平衡状态,并且还需要更新每个节点的平衡信息,导致时间代价较高。
- 而红黑树则采用更加灵活的平衡维护方式。它将节点分为红色和黑色并通过特定的规则来保证树的平衡。与 AVL 树不同,红黑树允许节点之间的高度差超过 1,只需要改变少量节点的颜色信息不用旋转,就能达到平衡,并可能进行较少的旋转,但它通过保证从根节点到叶节点的任意路径上黑色节点的数量相同来避免树的高度过大。因为红黑树的平衡维护更加灵活,所以在插入或删除节点时,需要调整的次数相对较少,导致时间代价较低。
空间成本
红黑树相对于
AVL
树需要额外存储颜色信息、指向父节点的指针,以及额外的
1
位(或
1
字节)空间
来表示颜色。相比之下,
AVL
树相对简单,不需要额外存储颜色信息,只需要存储平衡因子。
为什么使用红黑树而不使用AVL树?
- 插入、删除操作的代价较低:红黑树的调整策略对于插入或删除的代价相对较低,而 AVL 树的严格平衡策略可能需要更多的操作来保持平衡,从而导致时间代价更高。
- 更好的插入、删除性能:当需要插入和删除节点时,红黑树的结构调整代价相对较小,因此相对来说插入和删除操作的性能更好