N. Number Reduction

39 篇文章 0 订阅

Problem - 1765N - Codeforces

image-20231004212521844

发现如果是无前导0最小数那么在保证删除k个数时第1位是最小的,第二位一定是相对最小的,且答案第一位和第二位在原位置的间隔是小于等于还可以删除的位数的。

因此,对于原数字长度位n,要删除k,那么答案长度为n - k,这n - k位每一个都是优先选小的,如果不能再选较大值(对于首位比较特殊,不能出现前导零,因此首位从1开始),可以从第1位开始进行枚举0到9将n - k位进行填充。

每一次选完后,这一个数前面可能还有没有选的,但是由于已经选过该位,再选前面的会导致答案变大,因此不要。

可以用10个队列存入每一个数的下标,用一个变量last记录上一个在原数字中选择的数的下标。对每一位依次遍历0到9这10个队列,如果当前数字队列满足条件:

  • 这个数字的下标大于等于上一个下标+1
  • 这个数字的下标跟上一个下标之间差值小于等于还可以删除的次数

满足这些条件时表示下一位是该数字,之后将这个last和还能删除的位进行更新,退出循环到下一位进行判断即可。

代码:

void solve() {
    string s; cin>>s;
    int k; cin>>k;
    int n = s.size();
    queue<int> q[10];
    for(int i = 0; i < n; ++i) q[s[i] - '0'].push(i);
    string ans = "";
    int last = 0, len = n - k;
    for(int i = 0; i < len; ++i) {
        for(int j = (i == 0); j < 10; ++j) {
            // 如果数字下标小于等于上一个下标,进行出队(因为以后都用不上了,大于上一位的下标才是可能有用的
            while(q[j].size() && q[j].front() < last) q[j].pop();
            // 如果满足当前位和上一位之间差值是小于等于还可以删除的数次数,表示可以
            if(q[j].size() && q[j].front() - last <= k) {
                ans += j + '0';
                k -= q[j].front() - last;
                last = q[j].front() + 1;
                break;
            }
        }
    }
    cout<<ans<<endl;
}

CF1765N Number Reduction - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

golemon.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值