题目大意:给一个以1为根的有根树,和一个排列p,q次询问。每次询问给出l, r, x
,问在以x为根的子树内是否存在一个节点在排列[pl, pr]
内。
思路:子树节点处理是dfs序。问题转换为在[pl, pr]
内是否有值在以x为根的子树内存在。
可以离线处理出[p1, pr]
和[1, p(l-1)]
内的值在以x为根的子树内的个数,通过判断这两个区间的值是否相等进而可以得到是否以x为根的子树在排列[pl, pr]
内存在。
#include <iostream>
#include <vector>
#include <string>
#include <cstring>
#include <set>
#include <map>
#include <queue>
#include <ctime>
#include <random>
#include <sstream>
#include <numeric>
#include <stdio.h>
#include <functional>
#include <bitset>
#include <algorithm>
using namespace std;
#define Multiple_groups_of_examples
// #define int_to_long_long
#define IOS std::cout.tie(0);std::cin.tie(0)->sync_with_stdio(false); // 开IOS,需要保证只使用Cpp io流 *
#define dbgnb(a) std::cout << #a << " = " << a << '\n';
#define dbgtt cout<<" !!!test!!! "<<'\n';
#define rep(i,x,n) for(int i = x; i <= n; i++)
#define all(x) (x).begin(),(x).end()
#define pb push_back
#define vf first
#define vs second
typedef long long LL;
#ifdef int_to_long_long
#define int long long
#endif
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 21;
/**
* https://zhuanlan.zhihu.com/p/667469838
* 只需要求出前缀[1, r] 和前缀[1, l-1]里区间内点的个数,如果相等,说明区间[l, r] 内没有新增的点,所以离线下来用树状数组维护一下区间和即可
*/
template <class T>
struct Fenwick {
int n;
vector<T> a;
Fenwick(const int &n = 0) : n(n), a(n, T()) {}
void modify(int i, T x) {
for (i++; i <= n; i += i & -i) {
a[i - 1] += x;
}
}
T get(int i) {
T res = T();
for (; i > 0; i -= i & -i) {
res += a[i - 1];
}
return res;
}
T sum(int l, int r) { // [l, r] *这里已经改过
return get(r + 1) - get(l);
}
int kth(T k) {
int x = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (x + i <= n && k >= a[x + i - 1]) {
x += i;
k -= a[x - 1];
}
}
return x;
}
};
void inpfile();
void solve() {
int n,q; cin>>n>>q;
vector<vector<int>> g(n + 1);
for(int i = 1; i < n; ++i) {
int u,v; cin>>u>>v;
g[u].push_back(v);
g[v].push_back(u);
}
// dfs序的左右端点
// 表示以x为根的子树的左右端点位置
vector<int> l(n + 1), r(n + 1);
int cnt = 0;
// 一个dfs找dfs序
auto dfs = [&](auto &&self, int u, int fa) -> void {
l[u] = ++cnt;
for(auto y: g[u]) {
if(y == fa) continue;
self(self, y,u);
}
r[u] = cnt;
};
dfs(dfs, 1,-1);
// 读入排列
vector<int> p(n + 1);
for(int i = 1; i <= n; ++i) cin>>p[i];
// 离线答案,[1, l - 1] 和 [1, r] 内
vector<array<int,2>> ans(q + 1);
vector<vector<array<int,3>>> qry(n + 1);
// 离线读入询问操作
for(int i = 1; i <= q; ++i) {
int l,r,x; cin>>l>>r>>x;
// 向l-1内存入 l范围的信息
qry[l-1].push_back({x, i, 0});
// 向r内存入 r范围的信息
qry[r].push_back({x, i, 1});
}
Fenwick<int> tr(n + 1);
for(int i = 1; i <= n; ++i) { // 按从1到n进行处理
tr.modify(l[p[i]], 1);
for(auto tmp: qry[i]) {
// x是以x为根的子树,id是询问id,k表示是l范围还是r范围内的信息
int x = tmp[0], id =tmp[1], k = tmp[2];
// 向第id个答案的l或r范围内存入信息, [1, l - 1] 或 [1, r] 的信息
ans[id][k] = tr.sum(l[x], r[x]);
}
}
for(int i = 1; i <= q; ++i) {
// 如果 [1, l - 1] 和 [1, r] 的值相同,表示以x为根的子树的节点内没有 [l, r] 范围的排列值
puts(ans[i][0] != ans[i][1] ? "YES" : "NO");
}
puts("");
}
#ifdef int_to_long_long
signed main()
#else
int main()
#endif
{
#ifdef Multiple_groups_of_examples
int T; cin>>T;
while(T--)
#endif
solve();
return 0;
}
void inpfile() {
#define mytest
#ifdef mytest
freopen("ANSWER.txt", "w",stdout);
#endif
}