微信小程序调用文心一言数据模型
目录
1.百度千帆大模型平台介绍
调用:
首先要与数据模型API的地址建立连接,利用微信自带api-wx.request()实现。
需要鉴权,有两种方式,用于识别身份,因为文心一言数据模型的使用要计费。
这里我们使用access_token方式,需要先向服务器发送一个请求数据的文件,根据其返回的access_token参数重新发送请求完成数据模型的调用。这里的access_token相当于调用数据模型的钥匙。
请求地址:ERNIE-4.0-8K - 千帆大模型平台 | 百度智能云文档 (baidu.com)
如图1-1,箭头与红框位置为各个可调用API接口的数据模型,红框右侧为选中模型的具体信息,包括请求地址、使用方法等,建议仔细阅读。
图1-1
如图1-2,也可在模型广场寻找合适的模型。
图1-2
要想调用模型,还需要在系统重创建应用,如图1-3红色箭头所指,按流程创建,创建内容自拟,对模型调用没有影响。
图1-3
绿色箭头为创建后的应用,我们在调用模型时要根据模型的API文档将应用的API Key和Secret Key填入用以获取连接。
各种数据模型的室友计费在如图1-4中红箭头所指的计费管理中查看,token调用为我们每次建立连接的必须的,按token次数可以得知我们调用了多少次数据模型。
图1-4
2.调用模型程序实现
我在这调用的模型为ERNIT-Tiny-8K,属于文心系列模型中的一种。
如图2-1,创建一个新的页面。
图2-1
加入简单的对话框以及按钮方便后续测试使用,如图2-2。
图2-2
稍微修改一下.wxml文件,将用户文本输入绑定存储函数,使获取的回答绑定到界面中:
<button type="primary" style="position: relative; left: 0rpx; top: 396rpx" bind:tap="getAnswer">获取回答</button>
<view style="position: relative; width: 100%; background: #d3d3d3; height: 100px; left: 0rpx; top: 17rpx">
<input bindinput="getmsg" placeholder="请输入文本" style="width: 750rpx; height: 235rpx; display: block; box-sizing: border-box" auto-focus />
</view>
<text style="position: relative; left: 0rpx; top: 214rpx">{{wxreply}}</text>
来到.js文件准备代码:
data: {
inputmsg:'',//存放用户输入内容
wxreply:'',//存放语言模型返回内容
wenxin_acc:''//用于存储语言模型的access_token
},
onLoad(options) {
this.getwenxin()//与文心模型建立联系,获取access_token
this.setData({
wxreply:'泥嚎啊,这里是回答内容'
})
},
getmsg(msg){//输入绑定函数,把输入数据存储到getinput中
this.setData({
getinput:msg.detail.value
})
console.log('输入了'+msg.detail.value);
},
与文心获取接口的函数,该函数绑定在“获取回答”按钮上:
getwenxin(){
var that = this;
const wenxin_url = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=b52gxsglW27RqsvZAwjITYH5&client_secret=G7lUVA0VMkZ7oLNFm0CfQKPMzWk8WSV0';//存放请求API的地址,这里根据官方API文档的提示填入API KEY和Secret Key
wx.request({
url: wenxin_url,
header: {
'Content-Type': 'application/json'
},//header根据API文档要求配置
method: 'POST',//请求方式,这里文档中要求为post
success:res=>{
console.log(res),
that.setData({//①标记--存储access_token
wenxin_acc:res.data.access_token
})
}
})
},
可见我在成功回调函数上写了console.log(res)用于获取网站返回信息,后序只需触发函数即可获得之,它的意义是获取调用语言模型必须的access_token值。这里标记①先不管。
此时图形化界面如图2-3所示:
图2-3
现在可以点击获取回答试试看能不能与模型地址成功连接,可见点击后也是成功获取到了,如图2-4:
图2-4
图中红色箭头所指的内容即我们需要的access_token。则上面代码部分标记①就可以将access_token存储于data当中方便我们后续使用。
接下来可以编写getAnswer()函数用以获取语言模型返回内容了:
getAnswer(){//向文心模型发送数据
var that = this
const wenxin_url = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-tiny-8k?access_token=' + this.data.wenxin_acc//刚刚获得的token
const question = {//向语言模型发送的数据
"messages": [
{
"role": "user",
"content": that.data.inputmsg
}
]
}
wx.request({//网络请求,下面是各个参数
url: wenxin_url,
method: 'POST',
data: question,
header: {'Content-Type': 'application/json'},
success:res=>{//将返回的数据存入data以便于显示
console.log(res.data)
that.setData({
wxreply:res.data.result
})
}
})
},
现在运行程序试试:
图2-5
没问题,输入文本试试能不能使用语言模型:
图2-6
可见已经能够成功调用模型了。
文章性质为本人学习后做的笔记,如有侵权请联系本人删除。