CNN经典网络AlexNet介绍及其pytorch实现

本文详细介绍了AlexNet的网络结构,包括5个卷积层、3个池化层和3个全连接层,并重点讨论了ReLU激活函数、重叠池化、多GPU训练和dropout等关键特性。这些创新技术显著提高了2012年ImageNet比赛的图像识别准确率,推动了深度学习的发展。
摘要由CSDN通过智能技术生成

目录

1 前言

2 网络结构

3 模型特点

3.1 ReLU激活函数

3.2 重叠池化层

3.3 多GPU训练

3.4 dropout

4 模型实现

5 参考文献


1 前言

        2012 年, AlexNet 横空出世。这个模型的名字来源于论⽂第一作者的姓名 Alex Krizhevsky。该模型以很大的优势获得了2012年ImageNet LSVRC竞赛的冠军,其准确率远超使用传统图像识别的准确率(top5错误率为15.3%,第二名为26.2%)。AlexNet网络的问世,成为了深度学习的引爆点,自那以后,深度学习迅速发展。

2 网络结构

Alexnet模型为8层深度网络,由5个卷积层和3个池化Pooling 层 (池化层不含参数,所以不计),还有3个全连接层构成。

        从图中可以看出,AlexNet网络结构分为上下两层,分别对应两个GPU的操作过程,这是由当时GPU内存的限制从而引起的,因此作者使用两块GPU进行计算,网络模型因此分为了上下两层。但是,随着GPU的发展,单个GPU足以实现这个模型。简化网络结构如下所示:

 相当于把原来的两层模型合并成一层,最后的输出结果还是不变,还是由4096-->1000

3 模型特点

3.1 ReLU激活函数

作者在模型实现的过程中引入非饱和非线性函数修正线性单元(Rectified linear unit,ReLU)     f(x) = max(0, x),作者表示在深度卷积神经网络中使用ReLU的训练时间比使用tanh要快几倍&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值