目录
1 前言
2012 年, AlexNet 横空出世。这个模型的名字来源于论⽂第一作者的姓名 Alex Krizhevsky。该模型以很大的优势获得了2012年ImageNet LSVRC竞赛的冠军,其准确率远超使用传统图像识别的准确率(top5错误率为15.3%,第二名为26.2%)。AlexNet网络的问世,成为了深度学习的引爆点,自那以后,深度学习迅速发展。
2 网络结构
Alexnet模型为8层深度网络,由5个卷积层和3个池化Pooling 层 (池化层不含参数,所以不计),还有3个全连接层构成。
从图中可以看出,AlexNet网络结构分为上下两层,分别对应两个GPU的操作过程,这是由当时GPU内存的限制从而引起的,因此作者使用两块GPU进行计算,网络模型因此分为了上下两层。但是,随着GPU的发展,单个GPU足以实现这个模型。简化网络结构如下所示:
相当于把原来的两层模型合并成一层,最后的输出结果还是不变,还是由4096-->1000
3 模型特点
3.1 ReLU激活函数
作者在模型实现的过程中引入非饱和非线性函数修正线性单元(Rectified linear unit,ReLU) f(x) = max(0, x),作者表示在深度卷积神经网络中使用ReLU的训练时间比使用tanh要快几倍&#