数据结构学习日记四:图

数据结构学习笔记

七、图

1、邻接矩阵

用Graph[N][N]存储N个顶点的边信息。因为边的信息的对称,使用 n(n+1)/2的一维数组存储,来节省空间。

查询某条边Vij:前面 i-1 行的个数 + j 列。

概念:

  • 邻接点:对于一个顶点,跟它有边直接相连的顶点。
  • 出度:从该点发出的边数;入度:指向该点的边数。
    • 无向图:对应行(或列)非0元素的个数;
    • 有向图:对应行非0元素的个数是“出度”;对应列非0元素的个数是“入度”。

邻接矩阵的不好:

当图是稠密图,用邻接矩阵很好;当图是稀疏图(点多边少),有大量的的无效元素,浪费空间,浪费时间。

2、邻接表

G[N] 为指针数组,对应矩阵每行一个链表,只存非0元素。

好处:

  • 方便找任一顶点的所有邻接点;
  • 适合特稀疏的稀疏图

3、图的遍历

3.1 深度优先搜索

(Depth First Search, DFS

void DFS(Vertex V){
    visited[V] = true;
    for(V 的每个邻接点 W)
        if( !visited[W] )
            DFS(W);
}

时间复杂度

若有N个顶点、E条边。

用邻接表存储,有O(N+E); 用邻接矩阵存储图,有O(N2)。

3.2 广度优先搜索

(Breadth First Search, BFS).

void BFS(Vertex V){
    visited[V] = true;
    Enqueue(V, Q);
    while(!IsEmpty(Q)){
        V = Dequeue(Q);
        for(V 的每个邻接点 W)
            if(!visited[W]){
                visited[W] = true;
                Enqueue(W, Q);
            }
    }
}

时间复杂度和DFS一样。

3.3 图不连通的解决方法

void ListComponents(Graph G){
    for(each V in G)
        if(!visited[V]){
            DFS(V);	//或者BFS(V)
        }
}

4、用邻接矩阵表示图

4.1 规范写法

typedef struct GNode* PtrToGNode;	//定义成指针,方便函数调用
struct GNode{
    int Nv;	//顶点数
    int Ne;	//边数
    WeightType G[MaxVertexNum][MaxVertexNum];	//邻接矩阵
    /*
    	//有时候,顶点具有特别的信息,需要定义DataType类型存储。
    	DataType Data[MaxVertexNum];	//存顶点的数据。
    */
};
typedef PtrToGNode MGraph;	//以邻接矩阵存储的图类型

//初始化一个有VertexNum个顶点但没有边的图
typedef int Vertex;	//用顶点下标表示顶点,为整型
MGraph CreateGraph(int VertexNum){
    Vertex V, W;
    MGraph Graph;
    
    Graph = (MGraph)malloc(sizeof(struct GNode));
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    
    //默认顶点编号从0开始
    for(V=0; V<Graph->Nv; V++)
        for(W=0; W<Graph->Nv; W++)
            Graph->G[V][W] = 0;	//或者INFINITY
    
    return Graph;
}

//插入一条边
typedef struct ENode* PtrToENode;
struct ENode{
    Vertex V1, V2;	//有向边<V1,V2>
    WeightType Weight;	//权重
};
typedef PtrToENode Edge;

void InsertEdge(MGraph Graph, Edge E){
    Graph->G[E->V1][E->V2] = E->Weight;
    
    //如果是无向图,还要插入边<V2,V1>
    Graph->G[E->V2][E->V1] = E->Weight;
}

//根据上面两个函数,建立一个MGraph
MGraph BuildGraph(){
    MGraph Graph;
    Edge E;
    Vertex V;
    int Nv, i;
    
    scanf("%d", &Nv);
    Graph = CreateGraph(Nv);
    scanf("%d", &(Graph->Ne));
    if(Graph->Ne != 0){
        E = (Edge)malloc(sizeof(struct ENode));
        for(i=0; i<Graph->Ne; i++){
            scanf("%d %d %d",
                 	&E->V1,&E->V2,&E->Weight);
            InsertEdge(Graph, E);
        }
    }
    
    //如果顶点还有具体信息,读入数据
    /*
    for(V=0; V<Graph->Nv; V++)
    	scanf(" %c", &(Graph->Data[V]));
    */
    
    return Graph;
}

4.2 简洁写法

int G[MAXN][MAXN], Nv, Ne;
void BuildGraph(){
    int i, j, v1, v2, w;
    
    scanf("%d", &Nv);
    //CreateGraph初始化图
    for(i=0; i<Nv; i++)
        for(j=0; j<Nv; j++)
            G[i][j] = 0;	//或INFINITY
    scanf("%d", &Ne);
    for(i=0; i<Ne; i++){
        scanf("%d %d %d", &v1, &v2, &w);
        //InsertEdge插入边
        G[v1][v2] = w;
        G[v2][v1] = w;
    }
}

5、用邻接表表示图

//图
typedef struct GNode* PtrToGNode;
struct GNode{
    int Nv;	//顶点数
    int Ne;	//边数
    AdjList G;	//邻接表
};
typedef PtrToGNode LGraph;

//邻接表
typedef struct Vnode{
    PtrToAdjVNode FirstEdge;
    //DataType Data;	//存顶点数据
} AdjList[MaxVertexNum];	//邻接表类型,顶点数组,边链表

//边
typedef struct AdjVNode* PtrToAdjVNode;
struct AdjVNode{
    Vertex AdjV;	//邻接点下标
    WeightType Weight;	//边权重
    PtrToAdjVNode Next;
}

//初始化一个有VertexNum个顶点但没有边的图
typedef int Vertex;	//用顶点下标表示顶点,为整型
LGraph CreateGraph(int VertexNum){
    Vertex V, W;
    LGraph Graph;
    
    Graph = (LGraph)malloc(sizeof(struct GNode));
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    
    for(V=0; V<Graph->Nv; V++)
        Graph->G[V].FirstEdge = NULL;
    
    return Graph;
}

void InsertEdge(LGraph Graph, Edge E){
    PtrToAdjVNode NewNode;
    //插入边<V1,V2>
    NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
    NewNode->AdjV = E->V2;
    NewNode->Weight = E->Weight;
    //将V2插入V1的表头
    NewNode->Next = Graph->G[E->V1].FirstEdge;
    Graph->G[E->V1].FirstEdge = NewNode;
    
    //如果是无向图,还要插入边 <V2,V1>
}

LGraph BuildGraph(){
    LGraph Graph;
    //...仿照邻接矩阵的
}

6、最短路径问题

  • 单源最短路径问题:从某个固定起点出发,求其到所有其他顶点的最短路径。
    • 无权图
    • 有权图
  • 多源最短路径问题:求任意两顶点间的最短路径。

6.1 无权图的单源最短路径算法

初始化:

dist[W] = S到W的最短距离;

dist[S] = 0;

path[W] = S到W的路上经过的某个顶点。

//改编BFS,
//因为是广度优先,所以第一次访问到顶点,就一定是最短路径
void ShortestPath(Vertex S){
    Enqueue(S,Q);
    while(!IsEmpty(Q)){
        V = Dequeue(Q);
        for( V 的每个邻接点 W )
            if(dist[W] == -1){	//-1表示当前结点未访问过,也可以是负无穷或者正无穷
                dist[W] = dist[V] + 1;//路径长度加1
                path[W] = V;		//记录该边的起点
                Enqueue(W, Q);
            }
    }
} 
//最终结果:dist[]数组存着起点到任意点的最短距离
//		  path[]能够回溯路过的顶点。

6.2 有权图的单源最短路径算法

有权图的最短路径不一定是经过顶点数少的。

6.2.1 Dijkstra算法(贪心)
  • 假设有一个集合S = { 源点s + 已经确定了最短路径的顶点vi }

  • 任一为收录集合的顶点v的最短路径,只经过集合S中的顶点。
    即 dist[v] = 【S →(vi∈S)→ v】的最小长度。

  • 要求路径是按照递增的顺序生成的,则

    • 最短路必须只经过S中的顶点;

    • 每次从未收录的顶点中选一个dist最小的收录(贪心);

    • 增加一个新的顶点进入集合S中,可能影响它一圈邻接点的dist值。

      假设 w 是 v 的 邻接点,

      ​ dist[w] = min{dist[w], dist[v] + <v,w>的权重}

//dist[]初始化是正无穷
//path[]初始化为-1,找路径的时候值为-1的是起点
void Dijkstra(Vertex s){
    while(1){
        V = 未收录顶点中dist最小者;
        
        if( 找不到V )//说明访问完了 
            break;
        
        collected[V] = true;	//塞进集合
        for( V 的每个邻接点 W)	//修改V的邻接点的dist值
            if(collected[W] == false)	//未收录集合
                if(dist[V]+<V,W>的权重 < dist[W]){
                    dist[W] = dist[V] + <V,W>的权重;
                    path[W] = V;
                }
    }
}

Dijkstra算法不能解决有负边的情况。

如何扫描出未收录顶点中dist最小者:

  • 方法一:直接遍历所有,时间复杂度O(V2+E),适合稠密图;
  • 方法二:将dist存在最小堆中,时间复杂度O(E logV),适合稀疏图。
6.2.2 Dijkstra算法的应用
  • 要求数最短路径有多少条
    • count[s] = 1; 初始化起点的条数为1
    • 如果找到更短路:count[W] = count[V];
    • 如果找到等长路:count[W] += count[V];
  • 要求边数最少的最短路(或者旅游规划问题想要费用最少的路径)
    • 边数最少相当于边的权重值都变成1。
    • count[s] = 0; 初始化起点的边数是0。自己到自己边数为0。
    • 如果找到更短路:count[W] = count[V] + 1;
    • 如果找到等长路:count[W] = count[V] + 1;

6.3 多源最短路径算法

方法一:直接将单源最短路径算法调用V遍,时间复杂度O(V3+EV);

方法二:Floyd算法,时间复杂度O(V3);

6.3.1 Floyd算法
  • Dk[i][j] = 路径 i→j 的最小长度,经过顶点数 ≤ k。

  • 最初的D-1是邻接矩阵,对角线初始化为0,D[i][j]就是E<i,j>边值,不连通就是正无穷。

  • D0, D1, …, DV-1就得到正确的最短路径了

  • 当Dk-1完成后,递推到Dk时:

    • 加入新的结点,路径不能更短,即Dk = Dk-1

    • 加入新的结点k,路径变短,则最短路径长度是:

      Dk[i][j] = Dk-1[i][k] + Dk-1[k][j]

void Floyd(){
    for(i = 0; i < N; i++ )
        for(j = 0; j < N; j++){
            D[i][j] = G[i][j];
            path[i][j] = -1;
        }
    for(k = 0; k < N; k++)
        for(i = 0; i < N; i++)
            for(j = 0; j < N; j++)
                if(D[i][k] + D[k][j] < D[i][j]){
                    D[i][j] = D[i][k] + D[k][j];
                    path[i][j] = k;
                    if(i==j && D[i][j]<0)	//出现负值圈
                        return false;	//不能正确解决,退出
                }
}

7、最小生成树问题

定义:

  • :无回路;V个顶点,V-1条边
  • 生成树:包含图中的全部顶点;V-1条边都在图里
  • 最小:边的权重和最小

7.1 Prim算法(贪心)

类似Dijkstra。

适合稠密图。暴力的时间复杂度为:O(V2)

//dist[V]:初始化为根结点到V的长度E<s,V> 或者 正无穷
//parent[s]: 初始化为-1
void Prim(){
    MST = {s};	//创建最小生成树,塞入s作为根结点
    while(1){
        V = 未收录顶点中 dist 最小者;
        if(这样的 v 不存在)
            break;
        dist[V] = 0;	//将 v 收录进 MST
        for( V 的每个邻接点 W)
            if(dist[W] != 0)	//W 未被收录 
                if( E<V,W> < dist[W]){
                    dist[W] = E<V,W>;
                    parent[W] = V;
                }
    }
    if( MST 中的顶点不到 V 个)	//说明图不连通
        Error("生成树不存在");
}
/* 邻接矩阵存储 - Prim最小生成树算法 */

Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    WeightType MinDist = INFINITY;

    for (V=0; V<Graph->Nv; V++) {
        if ( dist[V]!=0 && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回-1作为标记 */
}

int Prim( MGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType dist[MaxVertexNum], TotalWeight;
    Vertex parent[MaxVertexNum], V, W;
    int VCount;
    Edge E;
    
    /* 初始化。默认初始点下标是0 */
    for (V=0; V<Graph->Nv; V++) {
        /* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
        dist[V] = Graph->G[0][V];
        parent[V] = 0; /* 暂且定义所有顶点的父结点都是初始点0 */ 
    }
    TotalWeight = 0; /* 初始化权重和     */
    VCount = 0;      /* 初始化收录的顶点数 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */
           
    /* 将初始点0收录进MST */
    dist[0] = 0;
    VCount ++;
    parent[0] = -1; /* 当前树根是0 */

    while (1) {
        /* V = 未被收录顶点中dist最小者 */
        V = FindMinDist( Graph, dist );
        if ( V == ERROR ) /* 若这样的V不存在 */
            break;   /* 算法结束 */
            
        /* 将V及相应的边<parent[V], V>收录进MST */
        E->V1 = parent[V];
        E->V2 = V;
        E->Weight = dist[V];
        InsertEdge( MST, E );
        TotalWeight += dist[V];
        dist[V] = 0;
        VCount++;
        
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            if ( dist[W]!=0 && Graph->G[V][W]<INFINITY ) {
            /* 若W是V的邻接点并且未被收录 */
                if ( Graph->G[V][W] < dist[W] ) {
                /* 若收录V使得dist[W]变小 */
                    dist[W] = Graph->G[V][W]; /* 更新dist[W] */
                    parent[W] = V; /* 更新树 */
                }
            }
    } /* while结束*/
    if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
       TotalWeight = ERROR;
    return TotalWeight;   /* 算法执行完毕,返回最小权重和或错误标记 */
}

7.2 Kruskal算法 - 将森林合并成树

每次去图中找一条最小权重的边,且不构成回路。

时间复杂度:O(ElogE)。适合稀疏图。

void Kruskal(Graph G){
    MST = {};
    while( MST 中不到 V-1 条边 && E中还有边){
        从 E 中取一条权重最小的边E<V,W>;	//最小堆,实现
        将 E<V,W> 从 E 中删除;
        if( E<V,W> 不在 MST 中构成回路)	//并查集
            将E<V,W> 加入MST;
        else
            彻底无视 E<V,W>;
    }
    if( MST 中的不到 V-1 条边)	//说明图不连通
        Error("生成树不存在");
}
/* 邻接表存储 - Kruskal最小生成树算法 */

/*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName;     /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */

void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
    ElementType X;

    for ( X=0; X<N; X++ ) S[X] = -1;
}

void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}

SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}

bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
    Vertex Root1, Root2;

    Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
    Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */

    if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
        return false;
    else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
        Union( VSet, Root1, Root2 );
        return true;
    }
}
/*-------------------- 并查集定义结束 --------------------*/

/*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{
  /* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
    int Parent, Child;
    struct ENode X;

    X = ESet[p]; /* 取出根结点存放的值 */
    for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
        Child = Parent * 2 + 1;
        if( (Child!=N-1) && (ESet[Child].Weight>ESet[Child+1].Weight) )
            Child++;  /* Child指向左右子结点的较小者 */
        if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            ESet[Parent] = ESet[Child];
    }
    ESet[Parent] = X;
}

void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
    Vertex V;
    PtrToAdjVNode W;
    int ECount;

    /* 将图的边存入数组ESet */
    ECount = 0;
    for ( V=0; V<Graph->Nv; V++ )
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
                ESet[ECount].V1 = V;
                ESet[ECount].V2 = W->AdjV;
                ESet[ECount++].Weight = W->Weight;
            }
    /* 初始化为最小堆 */
    for ( ECount=Graph->Ne/2; ECount>=0; ECount-- )
        PercDown( ESet, ECount, Graph->Ne );
}

int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */

    /* 将最小边与当前堆的最后一个位置的边交换 */
    Swap( &ESet[0], &ESet[CurrentSize-1]);
    /* 将剩下的边继续调整成最小堆 */
    PercDown( ESet, 0, CurrentSize-1 );

    return CurrentSize-1; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/


int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType TotalWeight;
    int ECount, NextEdge;
    SetType VSet; /* 顶点数组 */
    Edge ESet;    /* 边数组 */

    InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
    ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
    InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    TotalWeight = 0; /* 初始化权重和     */
    ECount = 0;      /* 初始化收录的边数 */

    NextEdge = Graph->Ne; /* 原始边集的规模 */
    while ( ECount < Graph->Nv-1 ) {  /* 当收集的边不足以构成树时 */
        NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
        if (NextEdge < 0) /* 边集已空 */
            break;
        /* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
        if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
            /* 将该边插入MST */
            InsertEdge( MST, ESet+NextEdge );
            TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
            ECount++; /* 生成树中边数加1 */
        }
    }
    if ( ECount < Graph->Nv-1 )
        TotalWeight = -1; /* 设置错误标记,表示生成树不存在 */

    return TotalWeight;
}

8、拓扑排序

引入

大学要学习几十门课,有些课需要先修其他课作为基础,才能选修。如何排出这些课选修的顺序??

拓扑序

如果图中从V到W有一条有向路径,并且V一定要排在W之前。满足此条件的顶点序列称为一个拓扑序。

获得一个拓扑序的过程就是拓扑排序

AOV如果有合理的拓扑序,则必定是有向无环图

需要拓扑排序的图

需要拓扑的图

拓扑排序的可能结果

拓扑排序结果

处理过程:

  1. 输出没有前驱结点(即入度为0)的顶点;
  2. 删除该顶点(后续顶点的入度-1);
  3. 循环步骤1~2,直到拓扑图里无顶点。
void TopSort(){
    for(cnt = 0; cnt < V; cnt++){
        V = 未输出的入度为0的顶点;
        if( V 不存在){
            Error("图中有回路");
            break;
        }
        输出V,或者记录V的输出序号;
        for( V 的每个邻接点 W )
            Indegree[W]--;	//邻接点的入度-1
    }
}

时间复杂度主要看:怎么找为输出的入度为0的顶点。

可以随时把入度为0的结点,塞入一个容器里,栈或者队列。O(V + E)

void TopSort(){
    for( 图中的每个顶点 V ){
        if( Indegree[V] == 0 )
            Enqueue(V, Q);
    while(!IsEmpty(Q)){
        V = Dequeue(Q);
        输出V,或者记录V的输出序号;		cnt++;
        for( V 的每个邻接点 W )
            if(--Indequeue[W] == 0)	//如果去掉前驱结点,入度变为0,应该塞入队列。
                Enqueue(W, Q);
    }  
    if(cnt != V)
        Error("图中有回路");
}
/* 邻接表存储 - 拓扑排序算法 */

bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 */
    int Indegree[MaxVertexNum], cnt;
    Vertex V;
    PtrToAdjVNode W;
       Queue Q = CreateQueue( Graph->Nv );
 
    /* 初始化Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        Indegree[V] = 0;
        
    /* 遍历图,得到Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        for (W=Graph->G[V].FirstEdge; W; W=W->Next)
            Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
            
    /* 将所有入度为0的顶点入列 */
    for (V=0; V<Graph->Nv; V++)
        if ( Indegree[V]==0 )
            AddQ(Q, V);
            
    /* 下面进入拓扑排序 */ 
    cnt = 0; 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
        TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
        /* 对V的每个邻接点W->AdjV */
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( --Indegree[W->AdjV] == 0 )/* 若删除V使得W->AdjV入度为0 */
                AddQ(Q, W->AdjV); /* 则该顶点入列 */ 
    } /* while结束*/
    
    if ( cnt != Graph->Nv )
        return false; /* 说明图中有回路, 返回不成功标志 */ 
    else
        return true;
}

9、关键路径问题

AOE(Activity On Edge) 网络

  • 一般用于安排项目的工序

AOE网络

如何推导最早完成时间:

计算工期

初始化起点的最早完成时间为0。

计算方式:从起点开始推导。。。。

最早完成时间 = 前一个结点的最早完成时间 + 持续时间

如果有多条线路,取其中的最大值。

如何推导最晚完成时间:

计算最晚完成时间

初始化终点的最晚完成时间为其最早完成时间。

计算方式:从终点开始推导。。。。

最晚完成时间 = 后一个结点的最晚完成时间 - 持续时间

如果有多条线路,取其中最小值。

如何求机动时间:

机动时间 = Lastest[ j ] - Earliest[ i ] - C<i,j>

等于终点的最晚完成时间 - 起点的最早完成时间 - 边的持续时间。

例如:编号0到编号2的机动时间 = 6 - 0 - 4 = 2。

关键路径是啥:

绝对不允许延误的活动组成的路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值