Codeforces Round 911 (Div. 2) A~D

文章涉及C++编程中的三个不同问题:模拟水槽填水规则,使用树形动态规划解决AnjisBinaryTree问题,以及通过优化算法计算SmallGCD。这些题目展示了在处理字符串、树结构和数学优化中的技巧。
摘要由CSDN通过智能技术生成

A. Cover in Water

类似于mc中的填水规则,模拟即可。如果有长度大于2的水槽就可以无限取水,答案为2;否则计算所有水槽总长度。

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int t,n;
	vector<int>v;
	string s;
	cin>>t;
	while(t--)
	{
		v.clear();
		cin>>n;
		cin>>s;
		s=s+'#';
		for(int i=0;i<n;i++)
		{
			if(s[i]=='#')  continue;
			for(int j=i;j<=n;j++)
			{
				if(s[j]=='#')
				{
					v.push_back(j-i);
					i=j;
					break;
				}
			}
		}
		if(!v.size())
		{
			cout<<"0\n";
			continue;
		}
		int flag=0;
		for(int i=0;i<v.size();i++)
			if(v[i]>2)
			{
				flag=1;
				break;
			}
		if(flag)  cout<<"2\n";
		else
		{
			int sum=0;
			for(int i=0;i<v.size();i++)  sum+=v[i];
			cout<<sum<<'\n';
		}
	}
}

B. Laura and Operations

猜结论,看abc中奇数多还是偶数多,多的就是1。

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int t,a[4],st[4];
	cin>>t;
	while(t--)
	{
		memset(st,0,sizeof(st));
		int maxx=0;
		for(int i=1;i<=3;i++)  cin>>a[i],a[i]%=2;
		if(a[1]==a[2]&&a[2]==a[3])  cout<<"1 1 1\n";
		else
		{
			int x=0,y=0;
			for(int i=1;i<=3;i++)
				if(a[i]==1)  x++;
				else  y++;
			if(x<y)
				for(int i=1;i<=3;i++)
					if(a[i])  cout<<"1 ";
					else  cout<<"0 ";
			else
				for(int i=1;i<=3;i++)
					if(a[i]==0)  cout<<"1 ";
					else  cout<<"0 ";
			cout<<'\n';
		}
	}
}

C. Anji's Binary Tree

模拟树形dp即可,根据叶子结点和父结点的关系判断是否对dp值+1,注意只有叶子节点才能为U,不然会走死循环。

#include<bits/stdc++.h>
using namespace std;
int t,n,l[300010],r[300010],dp[300010],dpl[300010],dpr[300010];
string s;
void dfs(int u)
{
	if(l[u])
	{
		dfs(l[u]);
		if(s[u]=='L')  dpl[u]=dp[l[u]];
		else  dpl[u]=dp[l[u]]+1;
	}
	if(r[u])
	{
		dfs(r[u]);
		if(s[u]=='R')  dpr[u]=dp[r[u]];
		else  dpr[u]=dp[r[u]]+1;
	}
	if(l[u]&&!r[u])  dp[u]=dpl[u];
	else if(!l[u]&&r[u])  dp[u]=dpr[u];
	else if(l[u]&&r[u])  dp[u]=min(dpl[u],dpr[u]);
	else  dp[u]=0;
}
void solve()
{
	cin>>n;
	for(int i=1;i<=n;i++)  dp[i]=0,dpl[i]=0,dpr[i]=0;
	cin>>s;
	s='?'+s;
	for(int i=1;i<=n;i++)  cin>>l[i]>>r[i];
	dfs(1);
	cout<<dp[1]<<'\n';
}
int main()
{
	cin>>t;
	while(t--)  solve();
}

D. Small GCD

注意到只需要对更小的两个数求gcd,考虑将数组排序后固定最大值,那么从左向右做扫描依次对每个最大值做计算,然后从最大值的左侧寻找两个较小的值求gcd总和。问题就变为如何求区间中任意两数的gcd总和,和hdu4676类似,答案为\sum \phi (d)\cdot C{_{cnt_{d}}}^{2},d为所有数的因子。

本题只需要求n-1个区间的答案,且区间的左端点均为1,那么就比较好维护了。每次加入新的数时,如果某个因子d的次数增加1,那么由组合数可知,答案就会增加\phi (d)*cnt_{d},然后令cnt_{d}加1即可,时间复杂度为O(n\sqrt{n})

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100010;
ll res=0,sum=0;
int t,n,primes[N],Cnt;
ll phi[N],a[N],cnt[N];
bool st[N];
void init(int n)
{
	phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            primes[Cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;i*primes[j]<=n;j++)
        {
            st[i*primes[j]]=true;
            if(i%primes[j]==0)
            {
                phi[i*primes[j]]=phi[i]*primes[j];
                break;
            }
            phi[i*primes[j]]=phi[i]*(primes[j]-1);
        }
    }
}
void add(int x)
{
	for(int i=1;i<=x/i;i++)
	{
		if(x%i==0)
		{
			sum+=phi[i]*cnt[i],cnt[i]++;
			if(i!=x/i)  sum+=phi[x/i]*cnt[x/i],cnt[x/i]++;
		}
	}
}
void solve()
{
	memset(cnt,0,sizeof(cnt));
	cin>>n;
	for(int i=1;i<=n;i++)  cin>>a[i];
	sort(a+1,a+n+1);
	sum=0,res=0;
	for(int i=1;i<n;i++)  add(a[i]),res+=sum;
	cout<<res<<'\n';
}
int main()
{
	cin>>t;
	init(100000);
	while(t--)  solve();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值