搜索与图论:Prim

Prim算法求最小生成树:

每次将离连通部分的最近的点和点对应的边加入的连通部分,连通部分逐渐扩大,最后将整个图连通起来,并且边长之和最小。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510;

int g[N][N];//存储图
int dist[N];//存储各个节点到生成树的距离
bool st[N];//节点是否被加入到生成树中
int pre[N];//节点的前驱节点,用于输出各个边时需要,该题不需要
int n, m;//n 个节点,m 条边

void prim()
{
    memset(dist,0x3f3f3f3f, sizeof dist);//初始化距离数组为一个很大的数(10亿左右)
    int res= 0;
    dist[1] = 0;//从 1 号节点开始生成 
    for(int i = 0; i < n; i++)//每次循环选出一个点加入到生成树
    {
        int t = -1;
        for(int j = 1; j <= n; j++)//每个节点一次判断,直到遍历完全部的点,找到未在生成树的点的最小距离点
        {
            if(!st[j] && (t == -1 || dist[j] < dist[t]))//如果没有在树中,且到树的距离最短,则选择该点
                t = j;
        }

        //如果孤立点,直返输出不能,然后退出
        if(dist[t] == 0x3f3f3f3f)
        {
            printf("impossible\n");
            return;
        }

        st[t] = 1;// 选择该点
        res += dist[t];//生成树总长度加该点的长度,就是新的总长度
        for(int i = 1; i <= n; i++)//更新生成树外的点到生成树的距离
        {
            //从 t 到节点 i 的距离小于原来距离,则更新。
            //因为以前i的距离是到树的某个点的距离,现在树加入了t节点,所以判断是否i跟t更近是则更新i到树的距离,!st是判断是否是树外的点
            if(dist[i] > g[t][i] && !st[i])
            {
                dist[i] = g[t][i];//更新距离
                pre[i] = t;//从 t 到 i 的距离更短,i 的前驱变为 t.
            }
        }
    }
    printf("%d\n",res);
    return;
}

void getPath()//输出各个边,该题不需要
{
    for(int i = n; i > 1; i--)//n 个节点,所以有 n-1 条边。

    {
        printf("%d %d\n",i,pre[i]);// i 是节点编号,pre[i] 是 i 节点的前驱节点。他们构成一条边。
    }
}

int main()
{
    memset(g, 0x3f3f3f3f, sizeof(g));//各个点之间的距离初始化成很大的数
    scanf("%d%d",&n,&m);//输入节点数和边数
    while(m --)
    {
        int a, b, w;
        scanf("%d%d%d",&a,&b,&w);//输入边的两个顶点和权重
        g[a][b] = g[b][a] = min(g[a][b],w);//存储权重,因为是无向图,所以ab和ba都要赋值
    }

    prim();//求最小生成树
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MegumiKato丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值