acwing342.道路与航线(dij+拓扑序)

根据题目,很容易发现这是个最短路问题,然后就蒙了(bushi

通读题目,我们发现从一个点到另外一个点无非有两种连接方式,要么是边权为正的无向边,要么是边权可正可负的单向边。因此我们可以进行以下操作:

1、将边权为正的无向边构成一个个单独的连通块,把边权值未知的有向边当做连接的边,使得整个图形看起来如同大点(单独连通块)构成的图。而每个连通块中,都会有有限个点。进行一个大图的跑。

ps:注意题目中说恐怖分子那里,保证了块的存在,也保证了如果能飞则必定不是同一个连通块。

由于边权为负,我们此处使用拓扑排序,保证所有的点相连。

对于连通块中,我可以用dij跑出最小值。

好i的,整个题抽象完成,实践开始:

1、第一步,我们建图,同时开辟id数组存储每个点属于哪个连通块,用vector的block一维数组存每个连通块的点,使其加入。

2.分连通块。dfs每个连通块。

3.考虑连通块的入度,跑拓扑排序。

4.进行每个块中的每个点的dij,找出dij的每个点最优解

5.输出即可

#include<bits/stdc++.h>

using namespace std;

#define ll long long
#define PII pair<int, int>
#define PLL pair<ll, ll>

const int N = 2e5 + 10;
const int M = 150010;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps = 1e-8;
int n,mr,mp,S;
int h[N],e[M],ne[M],w[M],idx;
int id[N];//存储每个连通块
vector<int>block[N];//存储每个联通块中的点
int dist[N];
bool st[N];
int bcnt;
int din[N];
queue<int>q;
void add(int a,int b,int c)
{
    e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx ++;
}
void dfs(int u,int bid)
{
    id[u] = bid;
    block[bid].push_back(u);//加入这个连通块内

    for(int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if(!id[j])
            dfs(j,bid);
    }
}
void dij(int bid)
{
    priority_queue<PII,vector<PII>,greater<PII> >heap;

    for(auto ver : block[bid])
    {
        heap.push({dist[ver],ver});
    }
    while(heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second;
        int dis = t.first;
        if(st[ver]) continue;
        st[ver] = true;
        for(int i = h[ver]; ~i; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[ver] + w[i])
            {
                dist[j] = dist[ver] + w[i];
                if(id[j] == id[ver])
                {
                    heap.push({dist[j],j});
                }
            }
            if(id[j] != id[ver] && --din[id[j]] == 0)
            {
                q.push(id[j]);
            }
        }
    }
}
void topsort()
{
    memset(dist,0x3f,sizeof dist);
    dist[S] = 0;
    for(int i = 1; i <= bcnt; i ++)
    {
        if(!din[i])   q.push(i);
    }

    while(q.size())
    {
        int t = q.front();
        q.pop();

        dij(t);
    }
}
int main()
{
    scanf("%d%d%d%d",&n,&mr,&mp,&S);

    memset(h,-1,sizeof h);
    while(mr --)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c),add(b,a,c);
    }

    for(int i = 1;i <= n; i ++)
    {
        if(!id[i])
            dfs(i,++ bcnt);
    }

    while(mp--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
        din[id[b]] ++;
    }
    topsort();
    for(int i  = 1;i <= n; i ++)
        if(dist[i] > INF / 2) puts("NO PATH");
        else printf("%d\n",dist[i]);

    system("pause");
    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值