第五章:定积分(中)
定积分的意义:曲面梯形的面积
第三节:定积分计算(定积分的换元法和分部积分)
基本概念
-
换元积分法:换元必换限,配方不换限
- 第一类换元:
∫
a
b
f
(
φ
(
x
)
)
φ
′
(
x
)
d
x
=
∫
a
b
f
(
φ
(
x
)
)
d
φ
(
x
)
=
u
=
φ
(
x
)
∫
φ
(
a
)
φ
(
b
)
f
(
u
)
d
u
\int^b_af(\varphi(x))\varphi^{'}(x)dx = \int^b_af(\varphi(x))d\varphi(x) \mathop{=} \limits^{u = \varphi(x)}\int^{\varphi(b)}_{\varphi(a)}f(u)du
∫abf(φ(x))φ′(x)dx=∫abf(φ(x))dφ(x)=u=φ(x)∫φ(a)φ(b)f(u)du
- 第一类换元真看不出来就把复杂部分求导,例如: ∫ 0 π 2 s i n 2 x 1 + c o s 2 x d x \int^{\frac{\pi}{2}}_0\frac{sin2x}{1+cos^2x}dx ∫02π1+cos2xsin2xdx
- 第二类换元: ∫ a b f ( x ) d x = φ ( α ) = a , φ ( β ) = b x = φ ( t ) ∫ α β f ( φ ( t ) ) d φ ( t ) \int^b_af(x)dx \mathop{=}\limits^{x = \varphi(t)}_{\varphi(\alpha) = a,\varphi(\beta) = b} \int^{\beta}_{\alpha} f(\varphi(t))d\varphi(t) ∫abf(x)dxφ(α)=a,φ(β)=b=x=φ(t)∫αβf(φ(t))dφ(t),第二类换元大多是为了消去根号,如果看到根号,先想几何意义,因为可能是一个圆。例如: ∫ 0 a a 2 − x 2 d x ( a > 0 ) \int^a_0\sqrt{a^2-x^2}dx(a>0) ∫0aa2−x2dx(a>0)
- 第一类换元:
∫
a
b
f
(
φ
(
x
)
)
φ
′
(
x
)
d
x
=
∫
a
b
f
(
φ
(
x
)
)
d
φ
(
x
)
=
u
=
φ
(
x
)
∫
φ
(
a
)
φ
(
b
)
f
(
u
)
d
u
\int^b_af(\varphi(x))\varphi^{'}(x)dx = \int^b_af(\varphi(x))d\varphi(x) \mathop{=} \limits^{u = \varphi(x)}\int^{\varphi(b)}_{\varphi(a)}f(u)du
∫abf(φ(x))φ′(x)dx=∫abf(φ(x))dφ(x)=u=φ(x)∫φ(a)φ(b)f(u)du
-
分部积分法: 设 u ( x ) , v ( x ) ∈ C [ a , b ] , 则 ∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b v ( x ) u ′ ( x ) d x 设u(x),v(x)\in C[a,b],则\int^b_au(x)v^{'}(x)dx = u(x)v(x)|^b_a-\int^b_av(x)u^{'}(x)dx 设u(x),v(x)∈C[a,b],则∫abu(x)v′(x)dx=u(x)v(x)∣ab−∫abv(x)u′(x)dx
重要公式
- ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int^{\frac{\pi}{2}}_0f(sinx)dx = \int^{\frac{\pi}{2}}_0f(cosx)dx ∫02πf(sinx)dx=∫02πf(cosx)dx
- ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x \int^{\pi}_0xf(sinx)dx = \frac{\pi}{2}\int^{\pi}_0f(sinx)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx
-
∫
0
π
f
(
s
i
n
x
)
d
x
=
2
∫
0
π
2
f
(
s
i
n
x
)
d
x
\int^\pi_0f(sinx)dx = 2\int^{\frac{\pi}{2}}_0f(sinx)dx
∫0πf(sinx)dx=2∫02πf(sinx)dx
- ∫ 0 π s i n n x d x = 2 ∫ 0 π 2 s i n n x d x \int^{\pi}_0sin^nxdx = 2\int^{\frac{\pi}{2}}_0sin^nxdx ∫0πsinnxdx=2∫02πsinnxdx
- ∫ 0 π c o s n x d x = { 0 , n 为奇函数 2 ∫ 0 π 2 c o s n x d x , n 为偶函数 \int^\pi_0cos^nxdx = \begin{cases}0,&&n为奇函数\\2\int^\frac{\pi}{2}_0cos^nxdx,&&n为偶函数\end{cases} ∫0πcosnxdx={0,2∫02πcosnxdx,n为奇函数n为偶函数
- ∫ 0 π 2 x ( f ( s i n x ) + f ( c o s x ) ) d x = π 2 ∫ 0 π 2 f ( s i n x ) d x \int^{\frac{\pi}{2}}_0x(f(sinx)+f(cosx))dx = \frac{\pi}{2}\int^{\frac{\pi}{2}}_0f(sinx)dx ∫02πx(f(sinx)+f(cosx))dx=2π∫02πf(sinx)dx
- ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int^{\pi}_0xf(sinx)dx = \frac{\pi}{2}\int^{\pi}_0f(sinx)dx = \pi\int^{\frac{\pi}{2}}_0f(sinx)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)dx
- 点火公式: ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 1 2 I 0 , n 为偶数 n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 2 3 I 1 , n 为奇数 ,其中 I 0 = π 2 , I 1 = 1 ; \int^{\frac{\pi}{2}}_{0}sin^nxdx = \int^{\frac{\pi}{2}}_0cos^nxdx = \begin{cases}\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot...\cdot\frac{1}{2}I_0,&&n 为偶数\\\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot...\cdot\frac{2}{3}I_1,&&n 为奇数\end{cases} ,其中 I_0 = \frac{\pi}{2}, I_1 = 1; ∫02πsinnxdx=∫02πcosnxdx={nn−1⋅n−2n−3⋅...⋅21I0,nn−1⋅n−2n−3⋅...⋅32I1,n为偶数n为奇数,其中I0=2π,I1=1;
重要性质
-
对于复合函数 f [ u ( x ) ] f[u(x)] f[u(x)],如果内层函数 u ( x ) u(x) u(x)关于区间 [ a , b ] [a,b] [a,b]对称,则 f [ u ( x ) ] f[u(x)] f[u(x)]关于 [ a , b ] [a,b] [a,b]对称,如果 u ( x ) u(x) u(x)关于区间 [ a , b ] [a,b] [a,b]中心对称,则 f [ u ( x ) ] f[u(x)] f[u(x)]的对称性和外层函数 f ( x ) f(x) f(x)的奇偶性保持一致
-
常见变换(除了第三个在计算中使用外,其他几个只有在证明题中会用,本节主要讲定积分计算,主要介绍第三个)
- 积分区间平移 c c c:平移变换: ∫ a b f ( x ) d x = d x = d t t = x + c ∫ a + c b + c f ( x − c ) d x \int^b_af(x)dx \mathop{=}\limits^{t = x+c}_{dx = dt}\int^{b+c}_{a+c}f(x-c)dx ∫abf(x)dxdx=dt=t=x+c∫a+cb+cf(x−c)dx
- 积分区间变为以 y y y轴为对称轴的对称部分:对称变换: ∫ a b f ( x ) d x = d x = − d t t = − x ∫ − b − a f ( − x ) d x \int^b_af(x)dx \mathop{=}\limits^{t = -x}_{dx = -dt}\int^{-a}_{-b}f(-x)dx ∫abf(x)dxdx=−dt=t=−x∫−b−af(−x)dx
- 积分区间不变,被积函数改变:同区间变换: ∫ a b f ( x ) d x = d x = − d t t + x = a + b ∫ a b f ( a + b − t ) d t = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int^b_af(x)dx \mathop{=}\limits^{t+x = a+b}_{dx = -dt}\int^b_af(a+b-t)dt = \frac{1}{2}\int^b_a[f(x)+f(a+b-x)]dx ∫abf(x)dxdx=−dt=t+x=a+b∫abf(a+b−t)dt=21∫ab[f(x)+f(a+b−x)]dx
- 把积分区间映射到 [ 0 , 1 ] [0,1] [0,1]上:放缩变换: ∫ a b f ( x ) d x = d x = ( b − a ) d t t = x − a b − a ( b − a ) ∫ 0 1 f [ a + ( b − a ) x ] d x \int^b_af(x)dx \mathop{=}\limits^{t =\frac{x-a}{b-a}}_{dx = (b-a)dt}(b-a)\int^1_0f[a+(b-a)x]dx ∫abf(x)dxdx=(b−a)dt=t=b−ax−a(b−a)∫01f[a+(b−a)x]dx
-
对称性性质:
- ∫ − a a f ( x ) d x = 0 , f ( x ) 为奇数 \int^a_{-a}f(x)dx = 0,f(x)为奇数 ∫−aaf(x)dx=0,f(x)为奇数
- ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x , f ( x ) 为偶函数 \int^a_{-a}f(x)dx = 2\int^a_0f(x)dx,f(x)为偶函数 ∫−aaf(x)dx=2∫0af(x)dx,f(x)为偶函数
- ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int^a_{-a}f(x)dx = \int^a_0[f(x)+f(-x)]dx ∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx
-
周期函数性质:
- 若 f ( x ) = f ( x + T ) f(x) = f(x+T) f(x)=f(x+T),则: ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int^{a+T}_af(x)dx = \int^T_0f(x)dx ∫aa+Tf(x)dx=∫0Tf(x)dx, ∫ a a + n T f ( x ) d x = n ∫ 0 T f ( x ) d x \int^{a+nT}_af(x)dx = n\int^{T}_0f(x)dx ∫aa+nTf(x)dx=n∫0Tf(x)dx
- 若 f ( x ) = f ( x + T ) f(x) = f(x+T) f(x)=f(x+T),则: F ( x + T ) = ∫ a x + T f ( x ) d x = ∫ a x f ( x ) d x + ∫ x x + T f ( x ) d x = ∫ a x f ( x ) d x + ∫ 0 T f ( x ) d x F(x+T) = \int^{x+T}_af(x)dx =\int^x_af(x)dx+ \int^{x+T}_xf(x)dx = \int^x_af(x)dx+ \int^{T}_0f(x)dx F(x+T)=∫ax+Tf(x)dx=∫axf(x)dx+∫xx+Tf(x)dx=∫axf(x)dx+∫0Tf(x)dx
解题思路
-
定积分不等式或等式证明:
- 方法:
- method1:常见的四大变换,被积函数相同比积分区间,积分区间相同,比函数,如果都不相同,进行四大变换,转换成被积函数相同或者积分区间相同。
- method2:转化为函数不等式,求导画图讨论。
- method3:带绝对值的不等式
- ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int^b_af(x)dx| \le \int^b_a|f(x)|dx ∣∫abf(x)dx∣≤∫ab∣f(x)∣dx
- 三角不等式: ∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a|-|b|\le |a\pm b|\le |a|+|b| ∣a∣−∣b∣≤∣a±b∣≤∣a∣+∣b∣
- [ ∫ a b f ( x ) g ( x ) d x ] 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x [\int^b_af(x)g(x)dx]^2 \le \int^b_af^2(x)dx\int^b_ag^2(x)dx [∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx
- method4:使用积分中值定理,可以把积分转化成数,同时数也可以转化为积分,例如: f ( x ) = ∫ 0 1 f ( x ) d t = ∫ 0 2 f ( x ) 2 d t = ∫ 0 3 f ( x ) 3 d t f(x) = \int^1_0f(x)dt = \int^2_0\frac{f(x)}{2}dt = \int^3_0\frac{f(x)}{3}dt f(x)=∫01f(x)dt=∫022f(x)dt=∫033f(x)dt。
- method5:拉格朗日中值定理(函数和导数值的关系): ∫ a b f ( x ) d x = ∫ a b [ f ( x 0 ) + ( x − x 0 ) f ′ ( ξ ) ] d x \int^b_af(x)dx = \int^b_a[f(x_0)+(x-x_0)f^{'}(\xi)]dx ∫abf(x)dx=∫ab[f(x0)+(x−x0)f′(ξ)]dx,这个定理可以把函数变成函数导数和幂函数的组合。类似的若出现高阶导,使用泰勒公式。
- method6:牛顿-莱布尼茨公式(函数和原函数的关系): ∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int^b_af(x)dx = F(x)|^b_a = F(b)-F(a) ∫abf(x)dx=F(x)∣ab=F(b)−F(a)
- method7:被积函数含有导数的积分和被积函数的积分,使用分布函数。
- 例题:
- 已知 f ( x ) ∈ [ 0 , 1 ] f(x)\in [0,1] f(x)∈[0,1],且 f ( x ) f(x) f(x)单调递减, α ∈ ( 0 , 1 ) \alpha\in(0,1) α∈(0,1),证明 ∫ 0 α f ( x ) ≥ α ∫ 0 1 f ( x ) d x \int^\alpha_0f(x)\ge \alpha\int^1_0f(x)dx ∫0αf(x)≥α∫01f(x)dx(做变换解决,拆分积分区间后使用积分中值定理也可以做)
- f ( x ) ∈ [ 0 , + ∞ ) f(x)\in [0,+\infty) f(x)∈[0,+∞), f ( x ) > 0 f(x)>0 f(x)>0, f ( x ) f(x) f(x)单调递减, x n = ∑ k = 1 n f ( k ) − ∫ 1 n f ( x ) d x x_n = \sum\limits^{n}_{k = 1}f(k)-\int^n_1f(x)dx xn=k=1∑nf(k)−∫1nf(x)dx,证明 lim n → ∞ x n \lim\limits_{n\to \infty}x_n n→∞limxn存在。(证明极限存在,单调有界准则,证明有界性时需要使用不定积分的不等式)
- f ( x ) ∈ [ a , b ] f(x)\in [a,b] f(x)∈[a,b], f ( x ) f(x) f(x)单调递增,证明: ∫ a b x f ( x ) d x ≥ a + b 2 ∫ a b f ( x ) d x \int^b_axf(x)dx \ge \frac{a+b}{2}\int^b_af(x)dx ∫abxf(x)dx≥2a+b∫abf(x)dx(化为函数不等式)
- S ( x ) = ∫ 0 x ∣ c o s t ∣ d t ( x ≥ 0 ) S(x) = \int^x_0|cost|dt(x\ge 0) S(x)=∫0x∣cost∣dt(x≥0),证明: n π ≤ x ≤ ( n + 1 ) π n\pi \le x\le (n+1)\pi nπ≤x≤(n+1)π, 2 n ≤ S ( x ) ≤ 2 ( n + 1 ) 2n\le S(x)\le 2(n+1) 2n≤S(x)≤2(n+1),求极限 lim n → ∞ S ( x ) x \lim\limits_{n\to \infty}\frac{S(x)}{x} n→∞limxS(x)
- f ( x ) f(x) f(x)连续, f ( x ) = f ( x + π ) f(x) = f(x+\pi) f(x)=f(x+π),证明: ∫ 0 2 π ( s i n x + x ) f ( x ) d x = ∫ 0 π ( 2 x + π ) f ( x ) d x \int^{2\pi}_0(sinx+x)f(x)dx = \int^{\pi}_{0}(2x+\pi)f(x)dx ∫02π(sinx+x)f(x)dx=∫0π(2x+π)f(x)dx
- f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上可导, f ( 0 ) = 0 f(0) = 0 f(0)=0, ∣ f ′ ( x ) ∣ ≤ M |f^{'}(x)|\le M ∣f′(x)∣≤M,证明: ∣ ∫ 0 1 f ( x ) d x ∣ ≤ 1 2 M |\int^1_0f(x)dx|\le \frac{1}{2}M ∣∫01f(x)dx∣≤21M
- f ( x ) ∈ [ a , b ] f(x)\in [a,b] f(x)∈[a,b], ( a , b ) (a,b) (a,b)内可导,证明: max a ≤ x ≤ b ∣ f ( x ) ∣ ≤ 1 b − a ∫ a b ∣ f ( x ) ∣ d x + ∫ a b ∣ f ′ ( x ) ∣ d x \max\limits_{a\le x\le b}|f(x)|\le \frac{1}{b-a}\int^b_a|f(x)|dx+\int^b_a|f^{'}(x)|dx a≤x≤bmax∣f(x)∣≤b−a1∫ab∣f(x)∣dx+∫ab∣f′(x)∣dx
- f ′ ( x ) ∈ [ 0 , 2 π ] f^{'}(x)\in[0,2\pi] f′(x)∈[0,2π], f ( x ) f(x) f(x)单调递增,证明: ∣ ∫ 0 2 π f ( x ) s i n n x d x ∣ ≤ 2 [ f ( 2 π ) − f ( 0 ) ] n |\int^{2\pi}_0f(x)sinnxdx|\le \frac{2[f(2\pi)-f(0)]}{n} ∣∫02πf(x)sinnxdx∣≤n2[f(2π)−f(0)]
- 设 f ( x ) ∈ [ 0 , 1 ] f(x)\in [0,1] f(x)∈[0,1],且 f ′ ′ ( x ) > 0 f^{''}(x)>0 f′′(x)>0,证明: ∫ 0 1 f ( x 2 ) d x ≥ f ( 1 3 ) \int^1_0f(x^2)dx\ge f(\frac{1}{3}) ∫01f(x2)dx≥f(31)
- f ′ ′ ( x ) ∈ [ − a , a ] f^{''}(x)\in [-a,a] f′′(x)∈[−a,a], ( a > 0 ) (a>0) (a>0), f ( 0 ) = 0 f(0) = 0 f(0)=0,写出 f ( x ) f(x) f(x)的带拉格朗日余项的一阶麦克劳林公式,并证明 ∃ η ∈ [ − a , a ] \exist\eta\in [-a,a] ∃η∈[−a,a]使 a 3 f ′ ′ ( η ) = 3 ∫ − a a f ( x ) d x a^3f^{''}(\eta) = 3\int^a_{-a}f(x)dx a3f′′(η)=3∫−aaf(x)dx。
- f ′ ′ ( x ) [ 0 , 1 ] f^{''}(x)[0,1] f′′(x)[0,1],证明: ∫ 0 1 f ( x ) d x = f ( 0 ) + f ( 1 ) 2 − 1 2 ∫ 0 1 x ( 1 − x ) f ′ ′ ( x ) d x \int^1_0f(x)dx = \frac{f(0)+f(1)}{2} -\frac{1}{2}\int^1_0x(1-x)f^{''}(x)dx ∫01f(x)dx=2f(0)+f(1)−21∫01x(1−x)f′′(x)dx
- 设 f ( x ) f(x) f(x)为连续函数,利用定义,证明 F ( x ) = ∫ 0 x f ( t ) d t F(x) = \int^x_0f(t)dt F(x)=∫0xf(t)dt可导,且 F ′ ( x ) = f ( x ) F^{'}(x) = f(x) F′(x)=f(x)(tip:不可用洛必达,因为让证明可导,所以不知道是否可导,可以使用积分中值定理。)
- 方法:
-
给被积函数的导数或原函数,求抽象函数积分
- 步骤:
- step1:用分部积分
- 若给被积函数的导数,留下被积函数中导数已知部分,将其余部分微分,用分部。(tip: f ( x ) ∫ 1 x e − t 2 d t f(x)\int^x_1e^{-t^2}dt f(x)∫1xe−t2dt相当于给了两个条件, f ′ ( x ) = e − t 2 , f ( 1 ) = 0 f^{'}(x) =e^{-t^2},f(1) = 0 f′(x)=e−t2,f(1)=0)
- 若给被积函数的原函数,将被积函数中已知原函数的部分微分,用分部。
- step2:计算分部积分,注意积分再现,如果是幂函数和三角函数或指数函数相乘,可以用表格法。
- step1:用分部积分
- 例题:
- 设 f ( x ) = ∫ 1 x e − t 2 d t , 求 ∫ 0 1 f ( x ) d x 设f(x) = \int^x_1e^{-t^2}dt,求\int^1_0f(x)dx 设f(x)=∫1xe−t2dt,求∫01f(x)dx
- 设 f ′ ′ ( x ) 在 [ 0 , 1 ] 连续,且 f ( 0 ) = 1 , f ( 2 ) = 3 , f ′ ( 2 ) = 5 , 求 ∫ 0 1 x f ′ ′ ( 2 x ) d x 设f^{''}(x)在[0,1]连续,且f(0) = 1,f(2) = 3,f^{'}(2) = 5,求\int^1_0xf^{''}(2x)dx 设f′′(x)在[0,1]连续,且f(0)=1,f(2)=3,f′(2)=5,求∫01xf′′(2x)dx
- 设 y ′ = a r c t a n ( x − 1 ) 2 , y ( 0 ) = 0 , 求 ∫ 0 1 y ( x ) d x y^{'} = arctan(x-1)^2,y(0) = 0,求\int^1_0y(x)dx y′=arctan(x−1)2,y(0)=0,求∫01y(x)dx
- 步骤:
-
计算定积分 ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx 的思路
-
计算方法:
- 几何意义:看到类似于 a 2 − x 2 , a x − x 2 \sqrt{a^2-x^2},\sqrt{ax-x^2} a2−x2,ax−x2刚好是一个圆,可以使用这种形式
- 性质: ∫ − a a \int^a_{-a} ∫−aa奇偶性,即使被积函数不具有奇偶性也可以用 ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int^a_{-a}f(x)dx = \int^a_0[f(x)+f(-x)]dx ∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx,三角函数性质,周期函数
- 区间再现公式 : ∫ a b f ( x ) d x = d x = − d t t + x = a + b ∫ a b f ( a + b − t ) d t = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x :\int^b_af(x)dx \mathop{=}\limits^{t+x = a+b}_{dx = -dt}\int^b_af(a+b-t)dt = \frac{1}{2}\int^b_a[f(x)+f(a+b-x)]dx :∫abf(x)dxdx=−dt=t+x=a+b∫abf(a+b−t)dt=21∫ab[f(x)+f(a+b−x)]dx
- 牛顿莱布尼茨(找原函数)
-
几种定积分常见计算类型:
- case1: ∫ ( 1 + c o s x ) k \int(1+cosx)^k ∫(1+cosx)k型: ( 1 + c o s x ) k = ( 1 + 2 c o s 2 x 2 − 1 ) k = 2 k c o s 2 x 2 (1+cosx)^k = (1+2cos^2\frac{x}{2}-1)^k = 2^kcos^2\frac{x}{2} (1+cosx)k=(1+2cos22x−1)k=2kcos22x用点火
-
例题:
-
∫ 0 2 π s i n x d x \int^{2\pi}_0sinx dx ∫02πsinxdx
-
∫ 0 1 1 − x 2 d x \int^1_0 \sqrt{1-x^2}dx ∫011−x2dx
-
∫ 0 2 a a 2 − ( x − a ) 2 d x \int^{2a}_0\sqrt{a^2-(x-a)^2}dx ∫02aa2−(x−a)2dx
-
∫ 0 2 π ( 1 + c o s 4 x ) d x \int^{2\pi}_0(1+cos^4x)dx ∫02π(1+cos4x)dx
-
设 f ( x ) = { l n ( 1 + x ) , x > 0 1 4 + x 2 , x ≤ 0 , 设f(x) = \begin{cases}ln(1+x),&x>0\\\frac{1}{4+x^2},&x\leq 0,\end{cases} 设f(x)={ln(1+x),4+x21,x>0x≤0,计算 ∫ − 1 2 f ( x − 1 ) d x \int^2_{-1}f(x-1)dx ∫−12f(x−1)dx(使用分段函数的区间可加性)
-
∫ π 4 5 4 π s i n 4 x d x \int^{\frac{5}{4}\pi}_\frac{\pi}{4}sin^4xdx ∫4π45πsin4xdx
-
∫ 0 π ∣ s i n n x ∣ d x \int^{\pi}_0|sin \space nx|dx ∫0π∣sin nx∣dx
-
∫ 0 2 π c o s 4 x d x \int^{2\pi}_0cos^4xdx ∫02πcos4xdx(tip:周期性+点火)
-
设 F ( x ) = ∫ x x + 2 π s i n t e s i n t d t , 则 F ( x ) 为() 设F(x) = \int^{x+2\pi}_xsinte^{sint}dt,则F(x)为() 设F(x)=∫xx+2πsintesintdt,则F(x)为()
A. 与 x x x有关的函数,B. 正常数,C负常数,D. 0
-
∫ 0 π s i n 2 x ( 1 − s i n 2 x ) d x \int^\pi_0sin^2x(1-sin^2x)dx ∫0πsin2x(1−sin2x)dx
-
∫ 0 π 2 s i n 2 x d x \int^{\pi^2}_0sin^2\sqrt{x}dx ∫0π2sin2xdx
-
∫ 0 π x s i n x 1 + c o s 2 x d x \int^{\pi}_0\frac{xsinx}{1+cos^2x}dx ∫0π1+cos2xxsinxdx
-
∫ 0 π x s i n x c o s x d x \int^\pi_0xsinxcosxdx ∫0πxsinxcosxdx(这道题不能用性质 ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int^{\pi}_0xf(sinx)dx = \frac{\pi}{2}\int^{\pi}_0f(sinx)dx = \pi\int^{\frac{\pi}{2}}_0f(sinx)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)dx,因为 c o s x cosx cosx 化为 s i n x sinx sinx 的形式是一个分段函数, f ( x ) f(x) f(x) 要求必须是一个可以用一个式子表示出的式子)
-
∫ − 1 1 x ⋅ l n ( 1 + e x ) d x \int^1_{-1}x\cdot ln(1+e^x)dx ∫−11x⋅ln(1+ex)dx
-
∫ − π 2 π 2 s i n 4 x 1 + e x d x \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\frac{sin^4x}{1+e^x}dx ∫−2π2π1+exsin4xdx
-
∫ − 1 1 [ l n ( x + 1 + x 2 ) + x 2 ] c o s x d x \int^1_{-1}[ln(x+\sqrt{1+x^2})+x^2]cosxdx ∫−11[ln(x+1+x2)+x2]cosxdx
-
∫ 0 2 x 2 2 x − x 2 d x \int^2_0x^2\sqrt{2x-x^2}dx ∫02x22x−x2dx
-
∫ 0 π 2 s i n x s i n x + c o s x d x \int^{\frac{\pi}{2}}_0\frac{sinx}{sinx+cosx}dx ∫02πsinx+cosxsinxdx
-
∫ 0 π 2 s i n 3 x s i n 3 x + c o s 3 x d x \int^{\frac{\pi}{2}}_0\frac{sin^3x}{sin^3x+cos^3x}dx ∫02πsin3x+cos3xsin3xdx
-
∫ 0 2 π x ∣ s i n x ∣ d x \int^{2\pi}_0x|sinx|dx ∫02πx∣sinx∣dx
-
∫ 0 π 2 l n ( 1 + t a n x ) d x \int^\frac{\pi}{2}_0ln(1+tanx)dx ∫02πln(1+tanx)dx
-
∫ 0 π s i n x − s i n 3 x d x \int^{\pi}_0\sqrt{sinx-sin^3x}dx ∫0πsinx−sin3xdx
-
∫ 0 n π x ∣ s i n x ∣ d x \int^{n\pi}_0x|sinx|dx ∫0nπx∣sinx∣dx(tip:区间再现+积分再现)
-
-
第四节:反常积分(定积分+极限)
这节的考点主要有两个:计算,判断敛散性
基本概念
-
普通定积分和反常积分
- 定积分:区间有限并且区间内函数有界
- 反常积分:区间无限或积分区间函数无界
-
无穷限的反常积分
-
定义:设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ] [a,+\infty] [a,+∞] 上连续,如果极限 lim b → + ∞ ∫ a b f ( x ) d x \lim\limits_{b \to +\infty}\int^b_af(x)dx b→+∞lim∫abf(x)dx存在,则称为 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx ∫a+∞f(x)dx收敛,如果极限 lim b → + ∞ ∫ a b f ( x ) d x \lim\limits_{b\to +\infty}\int^b_af(x)dx b→+∞lim∫abf(x)dx 不存在,则称为 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx ∫a+∞f(x)dx 发散,类似地, ∫ − ∞ a f ( x ) d x = lim a → − ∞ ∫ a b f ( x ) d x \int^a_{-\infty}f(x)dx = \lim\limits_{a\to -\infty}\int^b_af(x)dx ∫−∞af(x)dx=a→−∞lim∫abf(x)dx
∫ − ∞ + ∞ f ( x ) d x = lim a → − ∞ ∫ a 0 f ( x ) d x + lim a → + ∞ ∫ 0 a f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx = \lim\limits_{a\to -\infty}\int^0_af(x)dx+\lim\limits_{a\to+\infty}\int^a_0f(x)dx ∫−∞+∞f(x)dx=a→−∞lim∫a0f(x)dx+a→+∞lim∫0af(x)dx
-
反常积分 ∫ − ∞ a f ( x ) d x 和 ∫ a + ∞ f ( x ) d x \int^a_{-\infty}f(x)dx和\int^{+\infty}_af(x)dx ∫−∞af(x)dx和∫a+∞f(x)dx同时收敛$ \Leftrightarrow 反常积分 反常积分 反常积分\int^{+\infty}_{-\infty}f(x)dx$收敛
-
奇 0 0 0偶倍只能在 ∫ − ∞ + ∞ f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx ∫−∞+∞f(x)dx 收敛才能用
-
若在相应的区间上,满足 F ′ ( x ) = f ( x ) , F^{'}(x) = f(x), F′(x)=f(x), 则
- ∫ a + ∞ f ( x ) d x = F ( x ) ∣ a + ∞ = lim x → + ∞ F ( x ) − F ( a ) = F ( + ∞ ) − F ( a ) \int^{+\infty}_af(x)dx = F(x)|^{+\infty}_a = \lim\limits_{x \to +\infty}F(x)-F(a) = F(+\infty)-F(a) ∫a+∞f(x)dx=F(x)∣a+∞=x→+∞limF(x)−F(a)=F(+∞)−F(a)
- ∫ − ∞ b f ( x ) d x = F ( x ) ∣ − ∞ b = F ( b ) − lim x → − ∞ F ( x ) = F ( b ) − F ( − ∞ ) \int^{b}_{-\infty}f(x)dx = F(x)|_{-\infty}^b = F(b)-\lim\limits_{x \to -\infty}F(x) = F(b)-F(-\infty) ∫−∞bf(x)dx=F(x)∣−∞b=F(b)−x→−∞limF(x)=F(b)−F(−∞)
- ∫ − ∞ + ∞ f ( x ) d x = F ( x ) ∣ − ∞ + ∞ = lim x → + ∞ F ( x ) − lim x → − ∞ F ( x ) = F ( + ∞ ) − F ( − ∞ ) \int^{+\infty}_{-\infty}f(x)dx = F(x)|_{-\infty}^{+\infty} = \lim\limits_{x \to +\infty}F(x)-\lim_{x \to -\infty}F(x) = F(+\infty)-F(-\infty) ∫−∞+∞f(x)dx=F(x)∣−∞+∞=x→+∞limF(x)−limx→−∞F(x)=F(+∞)−F(−∞)
-
-
函数无界的反常积分
-
定义:设函数 f ( x ) f(x) f(x) 在 ( a , b ] (a,b] (a,b] 上连续, 点 a 为 f ( x ) 点a为f(x) 点a为f(x) 的瑕点( a a a 右侧邻域无界),如果极限 lim t → a + ∫ t b f ( x ) d x \lim_{t \to a^+}\int^b_tf(x)dx limt→a+∫tbf(x)dx 存在,则称 ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx 收敛,否则,则称 ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx 发散
类似地,若点 b 为 f ( x ) b为f(x) b为f(x) 的瑕点 ( b 左侧邻域无界 ) (b左侧邻域无界) (b左侧邻域无界), ∫ a b f ( x ) d x = lim t → b − ∫ a t f ( x ) d x \int^b_af(x)dx = \lim\limits_{t\to b^-}\int^t_af(x)dx ∫abf(x)dx=t→b−lim∫atf(x)dx
若 c ( a < c < b ) 为 f ( x ) 的瑕点 c(a<c<b)为f(x)的瑕点 c(a<c<b)为f(x)的瑕点, ∫ a b f ( x ) d x = lim t → c − ∫ a t f ( x ) d x + lim s → c + ∫ s b f ( x ) d x \int^b_af(x)dx = \lim\limits_{t \to c^-}\int^t_af(x)dx+\lim\limits_{s \to c^+}\int^b_s f(x)dx ∫abf(x)dx=t→c−lim∫atf(x)dx+s→c+lim∫sbf(x)dx
-
反常积分 ∫ a c f ( x ) d x 和 ∫ c b f ( x ) d x 同时收敛 ⇔ 反常积分 ∫ a b f ( x ) d x \int^c_{a}f(x)dx和\int^{b}_cf(x)dx同时收敛 \Leftrightarrow 反常积分\int^{b}_{a}f(x)dx ∫acf(x)dx和∫cbf(x)dx同时收敛⇔反常积分∫abf(x)dx 收敛
-
-
Γ 函数 \Gamma函数 Γ函数:定义: Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x ( α > 0 ) \Gamma(\alpha) = \int^{+\infty}_0x^{\alpha-1}e^{-x}dx(\alpha >0) Γ(α)=∫0+∞xα−1e−xdx(α>0)(注意:这是一个关于 α \alpha α 的函数)
重要公式
- 无穷限判别法:第一判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = c ( c ≠ 0 , ≠ ∞ ) \lim \limits_{x \to +\infty}x^k\cdot f(x) = c(c\neq0,\neq\infty) x→+∞limxk⋅f(x)=c(c=0,=∞),则 ∫ a + ∞ f ( x ) d x = { 收敛, k > 1 发散, k ≤ 1 \int^{+\infty}_af(x)dx = \begin{cases}收敛,k>1\\发散,k\leq 1\end{cases} ∫a+∞f(x)dx={收敛,k>1发散,k≤1
- 函数无界反常积分:第一判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) (a右侧邻域无界) (a右侧邻域无界),且 lim x → a + ( x − a ) k ⋅ f ( x ) = c ( c ≠ 0 ≠ ∞ ) , 则 ∫ a b f ( x ) d x { 发散, k ≥ 1 收敛, k < 1 \lim_{x \to a^+}(x-a)^k\cdot f(x) = c(c\neq 0\neq \infty),则\int^b_af(x)dx\begin{cases}发散,k\geq 1\\收敛,k<1\end{cases} limx→a+(x−a)k⋅f(x)=c(c=0=∞),则∫abf(x)dx{发散,k≥1收敛,k<1
重要性质
- 无穷限判别法
- 第一判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = c ( c ≠ 0 , ≠ ∞ ) \lim\limits_{x \to +\infty}x^k\cdot f(x) = c(c\neq0,\neq\infty) x→+∞limxk⋅f(x)=c(c=0,=∞),则 ∫ a + ∞ f ( x ) d x = { 收敛, k > 1 发散, k ≤ 1 \int^{+\infty}_af(x)dx = \begin{cases}收敛,k>1\\发散,k\leq 1\end{cases} ∫a+∞f(x)dx={收敛,k>1发散,k≤1
- 第二判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = 0 \lim\limits_{x \to +\infty}x^k\cdot f(x) = 0 x→+∞limxk⋅f(x)=0,则 k > 1 时, ∫ a + ∞ f ( x ) d x 收敛 k>1时,\int^{+\infty}_af(x)dx收敛 k>1时,∫a+∞f(x)dx收敛
- 第三判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = ∞ \lim\limits_{x \to +\infty}x^k\cdot f(x) = \infty x→+∞limxk⋅f(x)=∞,则 k ≤ 1 时, ∫ a + ∞ f ( x ) d x 发散 k\leq1时,\int^{+\infty}_af(x)dx发散 k≤1时,∫a+∞f(x)dx发散
- 总结:三个判别法均可以转化为第一类判别法,转化方法如下
- 对于 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx ∫a+∞f(x)dx,判别 lim x → + ∞ 1 f ( x ) \lim\limits_{x\to +\infty}\frac{1}{f(x)} x→+∞limf(x)1的无穷大阶数 k k k
- 判断: { 发散, k ≥ 1 收敛, k < 1 \begin{cases}发散,k\geq 1\\收敛,k<1\end{cases} {发散,k≥1收敛,k<1
- 函数无界反常积分
- 第一判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) (a右侧邻域无界) (a右侧邻域无界),且 lim x → a + ( x − a ) k ⋅ f ( x ) = c ( c ≠ 0 ≠ ∞ ) , 则 ∫ a b f ( x ) d x { 发散, k ≥ 1 收敛, k < 1 \lim_{x \to a^+}(x-a)^k\cdot f(x) = c(c\neq 0\neq \infty),则\int^b_af(x)dx\begin{cases}发散,k\geq 1\\收敛,k<1\end{cases} limx→a+(x−a)k⋅f(x)=c(c=0=∞),则∫abf(x)dx{发散,k≥1收敛,k<1
- 第二判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) 且 lim x → a + ( x − a ) k ⋅ f ( x ) = 0 (a右侧邻域无界)且\lim\limits_{x\to a^+}(x-a)^k\cdot f(x) = 0 (a右侧邻域无界)且x→a+lim(x−a)k⋅f(x)=0, 则 k < 1 k<1 k<1 时, ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx 收敛。
- 第三判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) 且 lim x → a + ( x − a ) k ⋅ f ( x ) = ∞ (a右侧邻域无界)且\lim\limits_{x\to a^+}(x-a)^k\cdot f(x) = \infty (a右侧邻域无界)且x→a+lim(x−a)k⋅f(x)=∞, 则 k ≥ 1 k\geq1 k≥1 时, ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx发散。
- 总结:三个判别法均可以转化为第一类判别法,转化方法如下
- 对于 ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx,判别 lim x → a + 1 f ( x ) \lim\limits_{x\to a^{+}}\frac{1}{f(x)} x→a+limf(x)1的无穷小阶数 k k k
- 判断: { 发散, k ≥ 1 收敛, k < 1 \begin{cases}发散,k\geq 1\\收敛,k<1\end{cases} {发散,k≥1收敛,k<1
-
Γ
\Gamma
Γ函数性质:
Γ
(
α
)
=
∫
0
+
∞
x
α
−
1
e
−
x
d
x
(
α
>
0
)
\Gamma(\alpha) = \int^{+\infty}_0x^{\alpha-1}e^{-x}dx(\alpha >0)
Γ(α)=∫0+∞xα−1e−xdx(α>0)
- Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1) = \alpha\Gamma(\alpha) Γ(α+1)=αΓ(α), 如果要证明这个性质,可以用分部积分证明
- Γ ( n + 1 ) = n ! \Gamma(n+1)=n! Γ(n+1)=n!,其中, Γ ( 1 ) = 1 , Γ ( 2 ) = 1 ⋅ Γ ( 1 ) , Γ ( 3 ) = 2 ⋅ Γ ( 2 ) . . . \Gamma(1) = 1,\Gamma(2) = 1\cdot\Gamma(1),\Gamma(3) = 2\cdot \Gamma(2)... Γ(1)=1,Γ(2)=1⋅Γ(1),Γ(3)=2⋅Γ(2)...
- Γ ( 1 2 ) = ∫ x − 1 2 e − x d x = π \Gamma(\frac{1}{2})=\int x^{-\frac{1}{2}}e^{-x}dx = \sqrt{\pi} Γ(21)=∫x−21e−xdx=π, ∫ 0 + ∞ e − x 2 d x = π 2 \int^{+\infty}_{0}e^{-x^2}dx = \frac{\sqrt{\pi}}{2} ∫0+∞e−x2dx=2π
- ∫ x 5 2 e − x d x = 5 2 ⋅ 3 2 ⋅ 1 2 ⋅ π \int x^{\frac{5}{2}}e^{-x}dx = \frac{5}{2}\cdot\frac{3}{2}\cdot\frac{1}{2}\cdot\sqrt{\pi} ∫x25e−xdx=25⋅23⋅21⋅π
解题思路
- 计算反常积分:
- 方法:
- 定义法:
- 找 F ( x ) F(x) F(x),求极限。
- ∫ a + ∞ f ( x ) d x = F ( x ) ∣ a + ∞ = lim x → + ∞ F ( x ) − F ( a ) = F ( + ∞ ) − F ( a ) \int^{+\infty}_af(x)dx = F(x)|^{+\infty}_a = \lim\limits_{x \to +\infty}F(x)-F(a) = F(+\infty)-F(a) ∫a+∞f(x)dx=F(x)∣a+∞=x→+∞limF(x)−F(a)=F(+∞)−F(a)
- ∫ − ∞ b f ( x ) d x = F ( x ) ∣ − ∞ b = F ( b ) − lim x → − ∞ F ( x ) = F ( b ) − F ( − ∞ ) \int^{b}_{-\infty}f(x)dx = F(x)|_{-\infty}^b = F(b)-\lim\limits_{x \to -\infty}F(x) = F(b)-F(-\infty) ∫−∞bf(x)dx=F(x)∣−∞b=F(b)−x→−∞limF(x)=F(b)−F(−∞)
- ∫ − ∞ + ∞ f ( x ) d x = F ( x ) ∣ − ∞ + ∞ = lim x → + ∞ F ( x ) − lim x → − ∞ F ( x ) = F ( + ∞ ) − F ( − ∞ ) \int^{+\infty}_{-\infty}f(x)dx = F(x)|_{-\infty}^{+\infty} = \lim\limits_{x \to +\infty}F(x)-\lim\limits_{x \to -\infty}F(x) = F(+\infty)-F(-\infty) ∫−∞+∞f(x)dx=F(x)∣−∞+∞=x→+∞limF(x)−x→−∞limF(x)=F(+∞)−F(−∞)
-
Γ
\Gamma
Γ性质:
- Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1) = \alpha\Gamma(\alpha) Γ(α+1)=αΓ(α), 如果要证明这个性质,可以用分部积分证明
- Γ ( n + 1 ) = n ! \Gamma(n+1)=n! Γ(n+1)=n!,其中, Γ ( 1 ) = 1 , Γ ( 2 ) = 1 ⋅ Γ ( 1 ) , Γ ( 3 ) = 2 ⋅ Γ ( 2 ) . . . \Gamma(1) = 1,\Gamma(2) = 1\cdot\Gamma(1),\Gamma(3) = 2\cdot \Gamma(2)... Γ(1)=1,Γ(2)=1⋅Γ(1),Γ(3)=2⋅Γ(2)...
- Γ ( 1 2 ) = π \Gamma(\frac{1}{2}) = \sqrt{\pi} Γ(21)=π, ∫ 0 + ∞ e − x 2 d x = π 2 \int^{+\infty}_{0}e^{-x^2}dx = \frac{\sqrt{\pi}}{2} ∫0+∞e−x2dx=2π
- 定义法:
- 例题:计算反常积分
- ∫ 0 + ∞ x 4 e − x 2 d x \int^{+\infty}_0x^4e^{-x^2}dx ∫0+∞x4e−x2dx
- 求 L : y = x 3 e − x 2 与 x L:y = x^3e^{-x^2}与x L:y=x3e−x2与x轴围成的面积
- ∫ 0 + ∞ x 3 e − 2 x d x \int^{+\infty}_0x^3e^{-2x}dx ∫0+∞x3e−2xdx
- 计算 ∫ 0 + ∞ e − u 2 d u 计算\int^{+\infty}_0e^{-u^2}du 计算∫0+∞e−u2du(tip:可以使用 Γ 函数计算 \Gamma函数计算 Γ函数计算)
- ∫ 1 3 1 x − 1 d x \int^3_1\frac{1}{\sqrt{x-1}}dx ∫13x−11dx
- 若 ∫ 0 + ∞ 1 x α ( 1 + x ) β d x \int^{+\infty}_0\frac{1}{x^\alpha(1+x)^\beta}dx ∫0+∞xα(1+x)β1dx收敛,求 α , β \alpha,\beta α,β取值范围。
- 方法:
- 判断反常积分敛散性
- 找 F ( x ) F(x) F(x) 求极限
- 判别法(原函数不好找的情况)
- 无穷限判别法
- 第一判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = c ( c ≠ 0 , ≠ ∞ ) \lim\limits_{x \to +\infty}x^k\cdot f(x) = c(c\neq0,\neq\infty) x→+∞limxk⋅f(x)=c(c=0,=∞),则 ∫ a + ∞ f ( x ) d x = { 收敛, k > 1 发散, k ≤ 1 \int^{+\infty}_af(x)dx = \begin{cases}收敛,k>1\\发散,k\leq 1\end{cases} ∫a+∞f(x)dx={收敛,k>1发散,k≤1
- 第二判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = 0 \lim\limits_{x \to +\infty}x^k\cdot f(x) = 0 x→+∞limxk⋅f(x)=0,则 k > 1 时, ∫ a + ∞ f ( x ) d x 收敛 k>1时,\int^{+\infty}_af(x)dx收敛 k>1时,∫a+∞f(x)dx收敛
- 第三判别法: f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a,+\infty) [a,+∞) 上连续,且 lim x → + ∞ x k ⋅ f ( x ) = ∞ \lim\limits_{x \to +\infty}x^k\cdot f(x) = \infty x→+∞limxk⋅f(x)=∞,则 k ≤ 1 时, ∫ a + ∞ f ( x ) d x 发散 k\leq1时,\int^{+\infty}_af(x)dx发散 k≤1时,∫a+∞f(x)dx发散
- 函数无界反常积分
- 第一判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) (a右侧邻域无界) (a右侧邻域无界),且 lim x → a + ( x − a ) k ⋅ f ( x ) = c ( c ≠ 0 ≠ ∞ ) , 则 ∫ a b f ( x ) d x { 发散, k ≥ 1 收敛, k < 1 \lim_{x \to a^+}(x-a)^k\cdot f(x) = c(c\neq 0\neq \infty),则\int^b_af(x)dx\begin{cases}发散,k\geq 1\\收敛,k<1\end{cases} limx→a+(x−a)k⋅f(x)=c(c=0=∞),则∫abf(x)dx{发散,k≥1收敛,k<1
- 第二判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) 且 lim x → a + ( x − a ) k ⋅ f ( x ) = 0 (a右侧邻域无界)且\lim\limits_{x\to a^+}(x-a)^k\cdot f(x) = 0 (a右侧邻域无界)且x→a+lim(x−a)k⋅f(x)=0, 则 k < 1 k<1 k<1 时, ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx 收敛。
- 第三判别法: f ( x ) f(x) f(x) 在区间 ( a , b ] (a,b] (a,b] 上连续,点 a 为 f ( x ) a为f(x) a为f(x) 的瑕点 ( a 右侧邻域无界 ) 且 lim x → a + ( x − a ) k ⋅ f ( x ) = ∞ (a右侧邻域无界)且\lim\limits_{x\to a^+}(x-a)^k\cdot f(x) = \infty (a右侧邻域无界)且x→a+lim(x−a)k⋅f(x)=∞, 则 k ≥ 1 k\geq1 k≥1 时, ∫ a b f ( x ) d x \int^b_af(x)dx ∫abf(x)dx发散。
- 无穷限判别法
- 比阶法:
- 对于区间无限的反常积分,让
lim
x
→
∞
f
(
x
)
\lim\limits_{x\to \infty}f(x)
x→∞limf(x)与
lim
x
→
∞
1
x
l
n
x
\lim\limits_{x\to \infty}\frac{1}{xlnx}
x→∞limxlnx1进行比较
- 若 lim x → ∞ f ( x ) \lim\limits_{x\to \infty}f(x) x→∞limf(x)是 lim x → ∞ 1 x l n x \lim\limits_{x\to \infty}\frac{1}{xlnx} x→∞limxlnx1的高阶无穷小,则收敛
- 若 lim x → ∞ f ( x ) \lim\limits_{x\to \infty}f(x) x→∞limf(x)是 lim x → ∞ 1 x l n x \lim\limits_{x\to \infty}\frac{1}{xlnx} x→∞limxlnx1的低阶或无穷小,则发散
- 对于被积函数无界的反常积分,让
lim
x
→
a
f
(
x
)
\lim\limits_{x\to a}f(x)
x→alimf(x)与
lim
x
→
0
1
x
\lim\limits_{x\to 0}\frac{1}{x}
x→0limx1进行比较
- 若 ∣ lim x → a f ( x ) ∣ < ∣ lim x → a 1 x − a ∣ |\lim\limits_{x\to a}f(x)|<|\lim\limits_{x\to a}\frac{1}{x-a}| ∣x→alimf(x)∣<∣x→alimx−a1∣,即 lim x → a f ( x ) \lim\limits_{x\to a}f(x) x→alimf(x)是 lim x → a 1 x − a \lim\limits_{x\to a}\frac{1}{x-a} x→alimx−a1的低阶无穷大,则收敛。
- 若 ∣ lim x → a f ( x ) ∣ ≥ ∣ lim x → a 1 1 − x ∣ |\lim\limits_{x\to a}f(x)|\ge |\lim\limits_{x\to a}\frac{1}{1-x}| ∣x→alimf(x)∣≥∣x→alim1−x1∣,即 lim x → a f ( x ) \lim\limits_{x\to a}f(x) x→alimf(x)是 lim x → a 1 x − a \lim\limits_{x\to a}\frac{1}{x-a} x→alimx−a1的高阶或同阶无穷大,则发散。
- 对于区间无限的反常积分,让
lim
x
→
∞
f
(
x
)
\lim\limits_{x\to \infty}f(x)
x→∞limf(x)与
lim
x
→
∞
1
x
l
n
x
\lim\limits_{x\to \infty}\frac{1}{xlnx}
x→∞limxlnx1进行比较
- 例题:证明敛散性
- ∫ 0 + ∞ 1 1 + x 2 d x \int^{+\infty}_0\frac{1}{1+x^2}dx ∫0+∞1+x21dx
- ∫ 0 + ∞ 1 1 + x + s i n x d x \int^{+\infty}_0\frac{1}{1+x+sinx}dx ∫0+∞1+x+sinx1dx
- ∫ 0 + ∞ x + s i n x e x d x \int^{+\infty}_0\frac{x+sinx}{e^x}dx ∫0+∞exx+sinxdx
- ∫ 0 + ∞ x e x d x \int^{+\infty}_0\frac{x}{e^x}dx ∫0+∞exxdx
- ∫ 2 + ∞ l n x x d x \int^{+\infty}_2\frac{lnx}{x}dx ∫2+∞xlnxdx
- ∫ 2 + ∞ l n x x + s i n x d x \int^{+\infty}_2\frac{lnx}{x+sinx}dx ∫2+∞x+sinxlnxdx
- ∫ 1 3 1 x − 1 ( 3 − x ) 2 d x \int^3_1\frac{1}{\sqrt{x-1}(3-x)^2}dx ∫13x−1(3−x)21dx
- ∫ 0 + ∞ 1 1 + x d x \int^{+\infty}_0\frac{1}{1+x}dx ∫0+∞1+x1dx