Jacobi迭代法解线性方程组的python实现

介绍

Jacobi迭代法是一种常见的用于求解线性方程组的方法,Jacobi迭代法同时也存在着局限性,并不是所有的线性方程组都能用Jacobi迭代法进行求解。在求解某些线性方程组中,Jacobi迭代法是不收敛的,即发散。

代码

# 定义迭代次数和容忍误差
times0 = 1000
tol = 1e-7

def Jacobi(A, b, x):
    n = len(b)
    times = 0
    er = 1000
    # 初始解
    x0 = [0 for i in range(0, n)]
    while (times < times0) and (er > tol):
        for i in range(0, n):
            sigma = 0
            for j in range(0, n):
                if (i == j):
                    continue
                sigma += A[i][j] * x0[j]
            x[i] = (b[i] - sigma) / A[i][i]

        # 计算当前误差
        er = max(abs(a - b) for a, b in zip(x, x0))
        # 若当前误差小于容忍误差,则结束方法并返回当前解
        if (er < tol):
            return x
        x0 = x.copy()
        times += 1
    print("在最大迭代次数内不收敛")

# 示例
# 系数矩阵
A = [[1, 2, -2], [1, 1, 1], [2, 2, 1]]
# 右端向量
b = [1, 1, 1]
# 解向量
x = [0 for i in range(0, len(b))]

# 求解线性方程组
x = Jacobi(A, b, x)
print("Jabobi迭代法求解结果如下:\n", x)

运行结果

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Jacobi迭代法和Gauss-Seidel迭代法均是线性方程组的迭代方法。下面分别介绍它们的实现方法。 Jacobi迭代法 Jacobi迭代法的公式为: $$x_i^{(k+1)}=\frac{1}{a_{ii}}\left(b_i-\sum_{j=1,j\neq i}^na_{ij}x_j^{(k)}\right),\quad i=1,2,\cdots,n$$ 其中,$a_{ij}$是系数矩阵,$b_i$是常数向量,$x_i^{(k)}$是第$k$次迭代中$x_i$的近似值。 下面是Python实现Jacobi迭代法的代码: ```python import numpy as np def jacobi(A, b, x0, tol=1e-6, max_iter=100): n = len(A) x = x0.copy() for k in range(max_iter): x_new = np.zeros(n) for i in range(n): s = 0 for j in range(n): if j != i: s += A[i, j] * x[j] x_new[i] = (b[i] - s) / A[i, i] if np.linalg.norm(x_new - x) < tol: return x_new x = x_new return x ``` 其中,`A`和`b`分别是系数矩阵和常数向量,`x0`是初始,`tol`是迭代收敛的容许误差,`max_iter`是最大迭代次数。函数返回迭代得到的近似。 Gauss-Seidel迭代法 Gauss-Seidel迭代法的公式为: $$x_i^{(k+1)}=\frac{1}{a_{ii}}\left(b_i-\sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}-\sum_{j=i+1}^na_{ij}x_j^{(k)}\right),\quad i=1,2,\cdots,n$$ 其中,$a_{ij}$是系数矩阵,$b_i$是常数向量,$x_i^{(k)}$是第$k$次迭代中$x_i$的近似值。 下面是Python实现Gauss-Seidel迭代法的代码: ```python import numpy as np def gauss_seidel(A, b, x0, tol=1e-6, max_iter=100): n = len(A) x = x0.copy() for k in range(max_iter): for i in range(n): s1 = sum(A[i, j] * x[j] for j in range(i)) s2 = sum(A[i, j] * x[j] for j in range(i+1, n)) x[i] = (b[i] - s1 - s2) / A[i, i] if np.linalg.norm(A @ x - b) < tol: return x return x ``` 其中,`A`和`b`分别是系数矩阵和常数向量,`x0`是初始,`tol`是迭代收敛的容许误差,`max_iter`是最大迭代次数。函数返回迭代得到的近似
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值