遗传算法(GA算法)求解实例---旅行商问题 (TSP)

一、采用GA求解 (TSP)

完整代码关注博客底部微信公众号获得!

求解代码在文中,后续会出其他算法求解TSP问题,你们参加数学建模竞赛只需要会改代码即可。

我知道大家对原理性的东西不感兴趣,我把原理性的东西放在后面,大家如果需要写数模论文可以拿去,但是记得需要改一改,要不然查重过不去。

二、 旅行商问题

2.1 旅行商问题简介

旅行商问题(Travelling Salesman Problem, TSP) 是一个经典的组合优化问题,问题描述如下:

给定一组城市以及每对城市之间的距离,一个旅行商需要从某个城市出发,经过每个城市恰好一次,并最终回到起点城市。目标是找到一条总距离最短的旅行路线。

2.2 使用遗传算法解决 TSP

遗传算法是解决 TSP 问题的有效方法之一。它通过模拟自然进化过程(如选择、交叉、变异等)来逐步优化解,寻找最短路径。

2.2.1 遗传算法求解 TSP 的基本步骤

  1. 定义编码方式

    • 一个个体(即解)表示为一个城市序列。例如,假设有 5 个城市,用数字 0, 1, 2, 3, 4 表示,一个可能的解为 [0, 2, 4, 3, 1],表示从城市 0 出发,依次经过城市 2, 4, 3, 1,最后回到城市 0。
  2. 定义适应度函数

    • 适应度函数用于评估每个个体的优劣。在 TSP 中,适应度通常定义为旅行总距离的倒数(因为我们希望最小化距离)。例如,个体的路径为 [0, 2, 4, 3, 1],则其适应度为该路径总距离的倒数。
  3. 初始化种群

    • 随机生成一组解(路径),构成初始种群。种群中的每个个体表示一个可能的路径。
  4. 选择操作

    • 根据个体的适应度值,以一定的概率选择个体作为父代,用于生成下一代种群。适应度高的个体有更大的概率被选择。
  5. 交叉操作

    • 从父代中选取两个个体进行交叉操作,生成新的子代。例如,采用部分映射交叉(Partially Mapped Crossover, PMX)
  6. 变异操作

    • 对新生成的个体(子代)进行随机变异,以增加解的多样性。例如,随机交换两个城市的位置。
  7. 生成新种群

    • 用子代替换父代,形成新的种群。
  8. 迭代和终止

    • 重复上述过程,直到达到预定的迭代次数或找到一个满意的解。

2.3 实际例子:求解 6 个城市的 TSP

假设有 6 个城市,其坐标如下:

城市X 坐标Y 坐标
01020
13040
22010
34030
41010
55020

目标是找到一个经过所有城市且总距离最短的路径。

1. 初始化种群

初始种群由一组随机生成的城市序列组成,例如:

  • 个体 1: [0, 2, 4, 1, 5, 3]
  • 个体 2: [1, 0, 3, 5, 4, 2]
  • 个体 3: [3, 1, 0, 2, 4, 5]
  • …(假设种群大小为 100)

2. 计算适应度

对每个个体计算其路径总距离,例如:

  • 个体 1 的路径 [0, 2, 4, 1, 5, 3]
    • 路径总距离 = 距离(0, 2) + 距离(2, 4) + 距离(4, 1) + 距离(1, 5) + 距离(5, 3) + 距离(3, 0)
    • 假设计算得到路径总距离为 100,则适应度为 1/100 = 0.01

3. 选择操作

采用轮盘赌选择法:根据适应度值的大小,随机选择适应度高的个体作为父代。

4. 交叉操作

采用部分映射交叉(PMX)

  • 父代 1: [0, 2, 4, 1, 5, 3]
  • 父代 2: [1, 0, 3, 5, 4, 2]

选取交叉点(例如 24),交换基因片段后得到子代:

  • 子代 1: [0, 2, 3, 5, 4, 3]
  • 子代 2: [1, 0, 4, 1, 5, 2]

再根据父代保持路径唯一性调整得到合法子代:

  • 调整后子代 1: [0, 2, 3, 5, 1, 4]
  • 调整后子代 2: [1, 0, 3, 2, 5, 4]

5. 变异操作

对子代进行变异,例如随机交换子代 1 的城市位置 [5, 1]

  • 变异后子代 1: [0, 2, 3, 1, 5, 4]

6. 生成新种群

用子代替换种群中的劣质个体,形成新的种群。

7. 迭代与终止

重复上述步骤,迭代进行进化,直到达到预定的迭代次数或找到最短路径。

三、 采用GA求解TSP,代码(完整代码关注底部微信公众号获取)

3.1 求解该问题的代码

import numpy as np
import random

# 定义城市坐标
cities = np.array([
    [10, 20],
    [30, 40],
    [20, 10],
    [40, 30],
    [10, 10],
    [50, 20]
])


# 计算两城市之间的欧几里得距离
def calculate_distance(city1, city2):
    return np.sqrt(np.sum((city1 - city2) ** 2))


# 计算总旅行距离
def total_distance(path):
    distance = 0
    for i in range(len(path) - 1):
        distance += calculate_distance(cities[path[i]], cities[path[i + 1]])
    distance += calculate_distance(cities[path[-1]], cities[path[0]])  # 回到起点
    return distance




# 运行遗传算法
best_path, best_distance = genetic_algorithm(cities)
print("Best path:", best_path)
print("Best distance:", best_distance)

3.2 代码运行过程截屏

在这里插入图片描述

3.3 代码运行结果截屏(后续和其他算法进行对比)

在这里插入图片描述

四、 如何修改代码?

这一部分是重中之重,大家参加数学建模肯定是想跑出自己的结果,所以大家只需要把自己遇到的数学问题,抽象成TSP问题,然后修改代码的城市坐标,然后运行即可。

# 定义城市坐标
cities = np.array([
    [10, 20],
    [30, 40],
    [20, 10],
    [40, 30],
    [10, 10],
    [50, 20]
])

4.1 减少城市坐标,如下:

# 定义城市坐标
cities = np.array([
    [10, 20],
    [30, 40],
    [20, 10],
    [40, 30]
])

4.2 增加城市坐标,如下:

# 定义城市坐标
cities = np.array([
    [10, 20],
    [30, 40],
    [20, 10],
    [40, 30],
    [30, 40],
    [20, 10],
    [10, 10],
    [50, 20]
])

五、 遗传算法 (Genetic Algorithm, GA) 原理

5.1 GA算法定义

遗传算法 (Genetic Algorithm, GA) 是一种基于自然选择和遗传机制的随机搜索和优化方法,由 John Holland 在 20 世纪 70 年代提出。遗传算法通过模拟自然界生物的进化过程(如遗传、选择、交叉、变异等)来搜索解空间,从而找到问题的最优解。它常用于复杂的优化问题和求解计算难题。

5.2 GA算法的基本思想

遗传算法的核心思想是模拟达尔文进化论的“自然选择,适者生存”原理。在遗传算法中,候选解被表示为“个体”,多个个体组成一个“种群”。通过对种群中的个体进行复制、交叉、变异等操作,算法在搜索空间内不断迭代,逐步进化出接近最优解的结果。

遗传算法主要包括以下几个步骤:

  1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体表示一个可能的解。
  2. 适应度评估:根据适应度函数(目标函数)评估每个个体的优劣,适应度值越高表示个体越优。
  3. 选择操作:根据个体的适应度值,以一定的概率选择个体作为父代,以生成下一代种群。适应度高的个体有更大的概率被选择。
  4. 交叉操作:通过交换两个个体(父母)的部分基因(染色体片段),生成新的个体(子代)。这模拟了生物的繁殖过程。
  5. 变异操作:随机改变个体的部分基因,以增加种群的多样性,避免陷入局部最优解。
  6. 生成新种群:用选择、交叉和变异操作产生的新个体替代旧种群,并重复步骤 2 到 5,直到满足终止条件(如达到最大迭代次数或找到最优解)。

5.3 GA算法的工作流程

遗传算法的典型工作流程如下:

  1. 初始化种群:随机生成种群内的所有个体。
  2. 迭代进化
    • 计算适应度:评估种群中每个个体的适应度。
    • 选择:根据适应度选择部分个体作为父代。
    • 交叉:对子代进行交叉操作,生成新个体。
    • 变异:对部分新个体进行变异操作。
    • 更新种群:用新个体替代旧种群。
  3. 终止条件:如果满足终止条件(如达到最大迭代次数或找到满意解),输出结果;否则,返回第 2 步继续迭代。

5.4 GA算法的操作

1. 初始化种群

种群中的每个个体通常用一个二进制串实数串其他编码方式表示。初始种群的大小通常根据问题的规模和复杂度来决定。

2. 适应度函数

适应度函数(Fitness Function)用于评估每个个体的质量。适应度函数的设计应能够正确反映目标问题的优化目标,适应度值越高表示个体越优。

3. 选择操作

常见的选择方法有:

  • 轮盘赌选择法(Roulette Wheel Selection):根据个体的适应度值,以概率比例进行选择,适应度高的个体被选择的概率更大。
  • 锦标赛选择法(Tournament Selection):随机挑选若干个体进行竞赛,选择其中适应度最高的个体。
  • 排序选择法(Rank Selection):将个体按适应度排序,赋予选择概率。

4. 交叉操作

交叉(Crossover)是模拟生物遗传过程中的基因重组操作。常见的交叉方法有:

  • 单点交叉(Single-Point Crossover):在染色体中随机选择一个位置,交换两个父代的基因片段。
  • 多点交叉(Multi-Point Crossover):在染色体中选择多个位置进行基因片段的交换。
  • 均匀交叉(Uniform Crossover):以固定的概率在每个位置选择父代的基因进行交换。

5. 变异操作

变异(Mutation)是对个体基因的随机改变,以增加种群的多样性。常见的变异方法有:

  • 位变异(Bit Mutation):随机改变个体二进制串的某个位(0 变 1 或 1 变 0)。
  • 实数变异(Real-Value Mutation):对实数编码的基因加入随机扰动。

5.5 GA算法的优缺点

5.5.1 优点

  • 全局搜索能力强:遗传算法通过并行搜索和种群进化,能有效避免局部最优解,具有较强的全局搜索能力。
  • 不依赖梯度信息:遗传算法不需要目标函数的导数或梯度信息,适用于不可微分、非线性、多峰值等复杂优化问题。
  • 适应性强:能够处理不同类型的优化问题(如离散和连续优化问题)。

5.5.2 缺点

  • 计算成本高:遗传算法需要大量计算资源,尤其是在种群规模大和问题规模大时,计算效率较低。
  • 收敛速度慢:相对于一些局部搜索方法,遗传算法的收敛速度较慢。
  • 参数敏感:算法性能对参数(如种群规模、交叉率、变异率等)比较敏感,需要进行调优。

5.6 GA算法的应用场景

  • 函数优化:在非线性、多峰值函数优化问题中,寻找全局最优解。
  • 组合优化:如旅行商问题(TSP)、背包问题、调度问题等。
  • 机器学习:用于特征选择、超参数优化、神经网络结构优化等。
  • 工程优化:如结构优化、控制参数调优、交通流量优化等。
  • 生物信息学:如 DNA 序列比对、基因表达数据分析等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ymchuangke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值