泰迪杯实战案例超深度解析:旅游景点游客流量预测与资源优化

(2025年泰迪杯数据挖掘挑战赛D题特等奖案例)


一、案例背景与目标
1.1 应用场景与痛点

某5A级景区面临以下核心问题:

  • 拥堵严重:节假日热门景点游客密度超过10人/㎡,排队时间长达2小时。

  • 资源浪费:接驳车空载率30%,餐饮点位在非高峰时段闲置率60%。

  • 应急滞后:突发降雨或设备故障时,人工调度响应时间超过20分钟。

1.2 目标与量化指标
问题 目标 技术指标
游客流量预测 预测未来3天每15分钟客流量 MAE < 50人/时段,覆盖率 > 95%
资源调度优化 接驳车空载率降低至15%,餐饮等待时间 < 10分钟 调度响应时间 < 3分钟
异常事件响应 突发事件检测延迟 < 5分钟 准确率 > 90%,误报率 < 5%

二、数据准备与特征工程(超详细步骤)
2.1 多源数据整合与清洗
2.1.1 数据来源与格式
  1. 票务数据(MySQL数据库):

    • 字段:user_id(脱敏)、entry_timeexit_timegate_id

    • 清洗逻辑:剔除停留时间超过24小时的异常记录(可能为员工卡)。

  2. Wi-Fi探针数据(Kafka实时流):

    • 原始报文示例:

      json

      {
        "ap_id": "AP_023", 
        "timestamp": 1714550400,
        "mac_list": ["a1:b2:c3:d4:e5:f6", ...],
        "signal_strength": [-67, -72, ...]
      }
    • 解析步骤:

      python

      # 解析JSON并统计连接数
      from pyspark.sql.functions import explode
      df = spark.read.json(kafka_stream).selectExpr(
          "ap_id", "timestamp", 
          "size(mac_list) as user_count",
          "explode(mac_list) as mac"
      )
  3. 外部数据接入

    • 天气API(每小时调用):

      python

      import requests
      def fetch_weather(lat, lng):
          url = f"https://api.weather.com/v3?lat={lat}&lon={lng}"
          return requests.get(url).json()['hourly_forecast']
    • 微博舆情(Flume实时采集):

      bash

      # Flume配置片段
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习的锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值