泰迪杯实战案例超深度解析:基于多源数据的信用风险评估与反欺诈检测

(2026年泰迪杯数据挖掘挑战赛E题特等奖案例解析)


一、案例背景与目标
1.1 应用场景与痛点

金融行业面临信用违约与欺诈交易的双重挑战:

  • 信用违约:中小微企业贷款违约率高达8%,传统评分卡模型AUC仅0.72。

  • 团伙欺诈:新型跨平台欺诈占比35%,传统规则引擎漏检率超40%。

  • 监管要求:需满足《个人金融信息保护法》与可解释性监管要求。

1.2 目标与量化指标
任务 目标 技术指标
信用评分 AUC > 0.85,KS值 > 0.4 特征覆盖度 > 200维
欺诈检测 召回率 > 92%,误报率 < 3% 响应延迟 < 500ms
系统可解释性 SHAP平均特征贡献度 > 80% 监管报告自动生成

二、数据准备与特征工程(原子级拆解)
2.1 多源数据整合
2.1.1 数据源类型
  1. 结构化数据

    • 征信报告(人行、百融):200+字段,含历史借贷、还款记录等。

    • 交易流水:每秒处理10万+条记录,含交易时间金额商户类型等。

  2. 半结构化数据

    • 设备指纹(JSON格式):

      json

      {
        "device_id": "D9F3A5B",
        "ip": "192.168.1.1",
        "gps": [31.2304, 121.4737],
        "传感器数据": {"加速度":0.5,"陀螺仪":12.3}
      }
  3. 非结构化数据

    • 客服通话录音(ASR转文本):

      text

      用户:"最近资金周转困难,能否延期还款?"  
      客服:"请提供近三月银行流水..."
2.1.2 数据清洗与增强
  1. 缺失值处理策略

    字段类型 处理方法
    数值型(如收入) XGBoost MissForest多重插补
    类别型(如职业) 新增"未知"类别
    时间序列(如交易) 前向填充+异常检测标记
  2. 交易流水特征衍生

    • 时间窗口统计(滑动窗口=1小时):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习的锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值