数模笔记:灰色关联分析

本文介绍了利用序列几何形状相似度测量关联度的方法,通过统计图分析、母子序列设定、预处理、灰色关联度计算,评估系统间的关系。关键步骤包括画图分析、确定分析数列、预处理指标并计算关联度。特别提到了美赛中不宜使用的策略,并详细讲解了综合评价母序列的过程,以及如何计算权重和得分。
摘要由CSDN通过智能技术生成

基本思想:根据序列曲线的几何形状的相似程度来判断其联系是否紧密,曲线越接近相应序列之间的关联度就越大,反之就越小。

作用:系统分析,综合评价

系统分析步骤

        1.画统计图(用Excel画)

                画完后要做几句分析

        2.确定分析数列

                母序列(参考序列,母指标):类似于因变量y,这里记作{X}_0

                子序列(比较序列,子指标):类似于自变量x,这里记作X_1,X_2,X_3,......X_m

        3.对变量进行预处理(去量纲,缩小数据范围以简化计算)

                对序列里的每个指标进行预处理,先求出每个指标的均值,再用该指标中的每个元素除以均值。        

        4.计算子序列中各指标与母序列的关联系数和关联度

                两级最小差和两级最大差:将每一个指标看成是一个列向量,用子序列中的每个向量与母序列中的向量作差并取绝对值,并找到最小值和最大值,最小值成为两级最小差(a),最大值成为两级最大差(b)。

                子序列的每一项指标中的每个元素与母序列中的指标的对应的元素的灰色关联系数计算公式:

                                     \gamma (x_0(k)),x_i(k))=\frac{a+\rho b}{|x_0(k)-x_i(k)|+\rho b}\rho是分辨系数,一般取0.5)

                灰色关联度:

                                        \gamma (x_0,x_i)=\frac{1}{n}\sum_{k=1}^{n}\gamma (x_0(k)),x_i(k))

        5.通过比较子序列和母序列的关联度得结论

                哪个大哪个关联度高

建议

        美赛不建议用

综合评价步骤(构造母序列)

        1.对指标进行正向化。

                指标类型:极大型、极小型、中间型

        2.对正向化后的矩阵进行预处理

        3.将预处理后的的矩阵每一行的最大值取出构成母序列(虚构的母序列)

        4.计算各指标与母序列的关联度:r_1,r_2,r_3......r_m

        5.计算各个指标的权重(进行归一化处理):

                                    \omega_m=\frac{r_i}{R}      ,   i=1,2......m  ,  R=r_1+r_2+......+r_m

         6.计算第k个对象的得分

                                                   S_k=\sum_{1}^{m}Z_k_i\cdot \omega _m

        7.对得分进行归一化处理

                

安利:                

【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值