奇函数+(-)偶函数一定是非奇非偶函数?

本文分享了一个关于非奇非偶函数的题目,指出其定义域条件下,函数可以表示为奇偶函数之和。解析了奇偶函数的性质,并强调了(D)选项的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天遇到个有意思的题,跟大家分享一下,可能有的人不太了解:

首先说下结论:这题选D选项,以上均有可能;

开始证明:

非奇非偶函数的充要条件:
定义域是(一a,a)(a>0)或(一 oo,+oo)的函数为非奇非偶函数的充要条件是它可以表示为同一对称区间上的一个奇函数与一个偶函数之和、且这些奇偶函数都不恒等于零;

解释说明:

同一对称区间上且都不恒等于零的奇函数与偶函数之和为非奇非偶函数,但恒等于零的函数既可以是偶函数,又可以是奇函数,它与奇函数相加为奇函数,与偶函数相加为偶函数.因而仅(D)入选;

补充:

函数奇偶性的定义:

注:以下结论不考虑f(x)=0;这个函数恒等于0,它可奇可偶;

但是当它确定奇偶性之后,仍然满足以下结论;

奇函数+(-)奇函数=奇函数

偶函数+(-)偶函数=偶函数

奇函数×(÷)奇函数=偶函数

偶函数×(÷)偶函数=偶函数

奇函数×(÷)偶函数=奇函数
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心碎烤肠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值